Robust and Programmable Logic-In-Memory Devices Exploiting Skyrmion Confinement and Channeling Using Local Energy Barriers - Archive ouverte HAL
Article Dans Une Revue Physical Review Applied Année : 2022

Robust and Programmable Logic-In-Memory Devices Exploiting Skyrmion Confinement and Channeling Using Local Energy Barriers

Résumé

Magnetic skyrmions are promising candidates for logic-in-memory applications, intrinsically merging high-density nonvolatile data storage with computing capabilities, owing to their nanoscale size, fast motion, and mutual repulsions. However, concepts proposed so far suffer from reliability issues as well as inefficient conversion of magnetic information to electrical signals. In this paper, we propose a logicin-memory device, which exploits skyrmion confinement and channeling using anisotropy energy barriers to achieve reliable data storage and synchronous shift in racetracks combined with cascadable and reprogrammable logics relying purely on magnetic interactions. The device combines a racetrack shift register based on skyrmions confined in nanodots with full-adder (FA) gates. The designed FA is reprogrammable and cascadable and can also be used to perform simple logic operations such as AND, OR, NOT, NAND, XOR, and NXOR. The monolithic design of the logic gate and the absence of any complex electrical contacts makes the device ideal for integration with conventional CMOS circuitry.
Fichier principal
Vignette du fichier
PhysRevApplied.18.014025.pdf (4.08 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03740728 , version 1 (29-07-2022)

Identifiants

Citer

Naveen Sisodia, Johan Pelloux-Prayer, Liliana D Buda-Prejbeanu, Lorena Anghel, Gilles Gaudin, et al.. Robust and Programmable Logic-In-Memory Devices Exploiting Skyrmion Confinement and Channeling Using Local Energy Barriers. Physical Review Applied, 2022, 18 (1), pp.014025. ⟨10.1103/physrevapplied.18.014025⟩. ⟨hal-03740728⟩
64 Consultations
126 Téléchargements

Altmetric

Partager

More