Nodal Discrete Duality numerical scheme for nonlinear diffusion problems on general meshes
Résumé
DDFV (Discrete Duality Finite Volume) schemes are known for their ability to approximate nonlinear and linear anisotropic diffusion operators on general meshes, but they possess several drawbacks. The most important drawback of DDFV is the simultaneous use of the cell and the node unknowns. We propose a discretization approach that incorporates DDFV ideas and the associated analysis techniques, but allows for a rapid elimination of the cell unknowns. Further, unlike the DDFV scheme, the new "Nodal Discrete Duality" (NDD) scheme does not require specific adaptation in presence of discontinuities of the diffusion tensor along cell boundaries. We describe in detail the 2D NDD framework and its two 3D variants, focusing on the consistency properties of the discrete gradient and discrete divergence operators and on the key structural property of Discrete Duality. For the 2D scheme, convergence analysis is carried out and a series of numerical tests are provided for a large family of nonlinear anisotropic elliptic problems with zero Dirichlet boundary condition.
Origine | Fichiers produits par l'(les) auteur(s) |
---|