Checklist Strategies to Improve the Reproducibility of Deep Learning Experiments with an Illustration - Archive ouverte HAL
Poster De Conférence Année : 2022

Checklist Strategies to Improve the Reproducibility of Deep Learning Experiments with an Illustration

Ali Ben Abbess
  • Fonction : Auteur
Gérard Subsol
Shelley Stall
Marc Chaumont
Alison Specht

Résumé

We report a review of the reproducibility of three publications for Poverty estimation using DL and Remote sensing imagery. For each experiment, we identified the methods and workflows used, if the experiments were not fully reproducible. Although the three use cases were proposed for a specific task (poverty estimation), we believe that the evaluation methods could be applied to more general Deep Learning tasks, where difficulties might include (a) a lack of dataset specificity (and the metadata related with it), (b) inadequate description of the DL methodology, (c) the implementation methodology, and the infrastructure used. We also feel that these recommendations can be extended to other domains such as medical, climatic, biodiversity, industrial, military, etc.
Fichier principal
Vignette du fichier
Checklist Strategies to Improve the Reproducibility of Deep Learning Experiments with an illustration (1).pdf (1.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03738323 , version 1 (26-07-2022)

Licence

Identifiants

Citer

Ali Ben Abbess, Leonardo Meneguzzi, Pedro Pizzigatti Corrêa, David Mouillot, Romain David, et al.. Checklist Strategies to Improve the Reproducibility of Deep Learning Experiments with an Illustration. RDA 19th Plenary Meeting, Part Of International Data Week, Jun 2022, Seoul, South Korea. , 2022, ⟨10.5281/zenodo.6587702⟩. ⟨hal-03738323⟩
124 Consultations
82 Téléchargements

Altmetric

Partager

More