Pré-Publication, Document De Travail Année : 2022

On the convergence of a low order Lagrange finite element approach for natural convection problems

Résumé

The purpose of this article is to study the convergence of a low order finite element approximation for a natural convection problem. We prove that the discretization based on P1 polynomials for every variable (velocity, pressure and temperature) is well-posed if used with a penalty term in the divergence equation, to compensate the loss of an inf-sup condition. With mild assumptions on the pressure regularity, we recover convergence for the Navier-Stokes-Boussinesq system, provided the penalty term is chosen in accordance with the mesh size. We express conditions to obtain optimal order of convergence. We illustrate theoretical convergence results with extensive examples. The computational cost that can be saved by this approach is also assessed.
Fichier principal
Vignette du fichier
Legrand_etal.pdf (385.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03737519 , version 1 (25-07-2022)

Identifiants

Citer

Ionut Danaila, Francky Luddens, Cécile Legrand. On the convergence of a low order Lagrange finite element approach for natural convection problems. 2022. ⟨hal-03737519⟩
35 Consultations
57 Téléchargements

Altmetric

Partager

More