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Abstract

The purpose of this article is to study the convergence of a low order finite element approximation for a natural
convection problem. We prove that the discretization based on P1 polynomials for every variable (velocity, pressure
and temperature) is well-posed if used with a penalty term in the divergence equation, to compensate the loss of an
inf-sup condition. With mild assumptions on the pressure regularity, we recover convergence for the Navier-Stokes-
Boussinesq system, provided the penalty term is chosen in accordance with the mesh size. We express conditions
to obtain optimal order of convergence. We illustrate theoretical convergence results with extensive examples. The
computational cost that can be saved by this approach is also assessed.

1 Introduction

The finite element method was proved to be very effective for the numerical simulation of Phase Change Materials,
described by Navier-Stokes equations supplemented with Boussinesq approximation for natural convection and an
enthalpy model for the evolution of temperature. A common approach is to use a single domain method [1, 2] for the
momentum equation. Projection schemes [3] or Newton based algorithms [1, 4] have been shown to give accurate
results. Enthalpy models have been proven to be suitable for phase change, even with different thermophysical
properties between the two phases, especially when combined with adaptive mesh refinement [5, 6].

The use of Taylor-Hood finite element for the velocity-pressure unknowns ensures convergence of the method [7].
The stability of the scheme is dictated by the inf-sup condition. Indeed, when this condition is uniformly satisfied at
the discrete level, the well-posedness of the underlying problem is ensured. As a result, the pressure does not exhibit
spurious modes. A large number of finite elements have been proven to satisfy the inf-sup condition, for instance
the classical Taylor-Hood element. The lowest equal-order finite element P1-P1 pair does not satisfy this condition:
the finite element space for the velocity is not rich enough to control the spurious pressure mode. Apparition of
unphysical pressure oscillations has been highlighted in [8, section 5.2.5]. Several methods have been introduced
to neutralize spurious modes. One of the commonly employed consist to enrich the velocity space in adding one
degree of freedom per element, associated with the barycentre of the element. This new finite element, called P1b,
can be used for many different equations. In order to avoid the instability problem related to the choice of P1

finite element for the velocity, several methods induce smaller discrete spaces for the pressure unknown and/or use
an additional stabilization: projection stabilization [9, 10], the stabilization based on two local Gauss integrations
[11, 12], symmetric pressure stabilization [13], and many others. This paper focuses on the stabilized finite element
method based on minimal pressure stabilization procedures introduced by [14]. The aim of the study is to estimate
the effect of changing the discrete problem to a penalized problem and get corresponding a priori error estimates.

There exists a vast literature on error estimations for Navier-Stokes equations. Error estimates for the Stokes problem
in a bounded smooth domain with slip boundary condition have been established [15], using P1-P1 or P1b-P1 finite

1



element approximations and an additional penalty method on the boundary conditions. Estimation of the optimal
order of convergence for the velocity and the pressure for the time-dependent Stokes equation with discrete inf-sup
stable virtual space for k ≥ 2 and non-divergence free is analysed in [16]. Several pressure stabilizations are studied
in [17], with error analysis of time discretization schemes for corresponding Navier-Stokes equations.

The natural convection problem has been analysed using a Backward Euler and a fully Crank-Nicolson scheme with
a variational multi scale method and a stabilized term. Both schemes were proven to be unconditionally stable. Error
bounds were derived for a finite element space discretization satisfying the inf-sup condition [12]. The stability of
a finite element approximation scheme with inf-sup condition for phase change problems has been assessed in [18].
Assuming standard hypotheses on the discrete spaces, existence and stability of solutions of the Galerkin scheme
associated to Navier-Stokes-Boussinesq equations can be obtained [19]. Corresponding Cea’s estimate for smooth
solutions can also be derived. The use of mini element P1b-P1 pair was analysed in [7]. A priori error estimates were
derived for first and second order (in time) numerical schemes. Error bound using Pl-Pl pairs with (l ≥ 1) have been
established with different pressure stabilization, for example Local Projection Stabilization [10] or grad-div pressure
stabilization [15].

This paper focuses on the approximation scheme introduced in [1]. A constant penalty term is added to the dis-
cretized mass conservation equation. From an algebraic point of view, this penalty term avoids the use of pivoting
by eliminating a null block in the discretization matrix. It also ensures that the discrete pressure has zero average.
We let this penalty term vary according to the mesh size, to recover convergence for the velocity and temperature
unknowns, even if the inf-sup condition is not satisfied, e.g. for the P1-P1 pair. Using similar technique to [7], we
give a priori estimates and numerical illustration to support the use of such elements.

The paper is organized as follows: in §2, we present the finite element approximation for the natural convection. The
main result consists in Theorem 1 and is presented in §3, along with immediate corollaries illustrating the conver-
gence of the numerical scheme. In §4, we introduce a modified projection operator onto the finite element space, and
establish some approximation results. This operator allows us to prove Theorem 1 in §5. Finally, numerical results
for the projection operator as well as the natural convection problem are reported in §6, in agreement with theoretical
results.

2 Framework and discretization

2.1 Framework

Throughout the paper, Ω denotes a smooth bounded domain in R2. To use known regularity results, we assume
that its boundary ∂Ω is of class C1,1. We are interested in solving the natural convection problem modelled by the
Navier-Stokes equations supplemented with the Boussinesq approximation.

Denoting by u, p and θ the dimensionless velocity of the fluid, pressure and temperature respectively, the Navier-
Stokes-Boussinesq system of equations reads:

∇ · u = 0, (1)
∂u

∂t
+ (u∇)u+∇p− 1

Re
∇2u− fB(θ) ey = F , (2)

∂θ

∂t
+∇ · (θu)−∇ ·

(
1

RePr
∇θ
)

= g. (3)

fB stands for the Boussinesq buoyancy force, assumed to be a linear function of the temperature:

fB(θ) =
Ra

PrRe2
θ. (4)

We denote by Ra, Re and Pr the Rayleigh, Reynolds and Prandtl numbers respectively. Finally, F and g denote
external force and heat source.

The system (1)-(2)-(3) is supplemented with Dirichlet boundary conditions on u and θ.
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2.2 Weak formulation

To use finite element approximations, a weak formulation of the previous system is needed. We introduce classical
Hilbert spaces :

X = H1
0 (Ω), Q =

{
q ∈ L2(Ω) |

∫
Ω

q = 0

}
, X = X ×X, (5)

and define the following bilinear and trilinear forms: for u,v,w ∈X , p ∈ Q and θ, ψ ∈ X ,

a(u,v) = (∇u,∇v) , (6)
ā(θ, φ) = (∇θ,∇φ) , (7)
b(u, p) = − (∇ · u, p) , (8)

c(u,v,w) =
1

2
(u∇v,w)− 1

2
(u∇w,v) , (9)

c̄(u, θ, ψ) =
1

2
(u∇θ,ψ)− 1

2
(u∇ψ,θ) , (10)

where (u, v) =
∫

Ω
u · v denotes the scalar product in L2(Ω). If u ∈X is such that∇ ·u = 0, operators (9)-(10) are

equivalent to

c(u,v,w) = (u∇v,w) =

∫
Ω

(u∇v) ·w, (11)

c̄(u, θ, ψ) = (u∇θ, ψ) =

∫
Ω

(u∇θ)ψ. (12)

If (u, p, θ) is a solution to Eqns. (1)-(2)-(3) and (v, q, ψ) ∈ X × L2 × X , we obtain by integration by parts the
following weak formulation:

b(u, q) = 0, (13)(
∂u

∂t
,v

)
+

1

Re
a(u,v) + c(u,u,v) + b(v, p)− (fB(θ)ey,v) = (F ,v) , (14)(

∂θ

∂t
, ψ

)
+

1

RePr
ā(θ, ψ) + c̄(u, θ, ψ) = (g, ψ) . (15)

2.3 Properties of bilinear and trilinear forms

From definitions (6)-(10), the following classical coercivity and continuity estimates hold: there exist some positive
constants α, ᾱ, A, Ā such that, ∀u,v ∈X , ∀p ∈ Q and ∀θ, φ ∈ X,

|a(u,v)| ≤ A ‖u‖H1 ‖v‖H1 , (16)
|a(v,v)| ≥ α ‖v‖H1 , (17)
|ā(θ, φ)| ≤ Ā ‖θ‖H1 ‖φ‖H1 , (18)
|ā(θ, θ)| ≥ ᾱ ‖θ‖H1 , (19)
|b(u, p)| ≤ ‖u‖H1 ‖p‖L2 . (20)

We also use the continuity of trilinear forms c and c̄ : there exist positive constants C and C̄ such that, ∀u,v,w ∈X
and ∀θ, ψ ∈ X,

c(u,v,w) ≤ C ‖∇u‖L2 ‖∇v‖L2 ‖w‖
1
2

L2 ‖∇w‖
1
2

L2 , (21)

c̄(u, θ, ψ) ≤ C̄ ‖∇u‖L2 ‖∇θ‖L2 ‖ψ‖
1
2

L2 ‖∇ψ‖
1
2

L2 . (22)
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Owing to skew-symmetry properties, v and w can be swapped in the right hand side of (21), and similarly θ and ψ
in the right hand side of (22). In order to get the best possible convergence rate for the natural convection problem,
we rely on the continuity result of the following Proposition 1 that holds in the two-dimensional case.

Proposition 1. For any σ > 0, there exists a positive constant C depending only on Ω and σ such that

∀u,v,w,∈X, |c(u,v,w)| ≤ C‖u‖Hσ‖v‖H1‖w‖H1 , (23)
∀u,v,w,∈X, |c(u,v,w)| ≤ C‖v‖Hσ‖u‖H1‖w‖H1 . (24)

Proof. We start with 0 < σ < 1. Note that if (23) holds for 0 < σ < 1, then it holds for any σ′ > σ.

From Cauchy-Schwarz and Holder inequalities, we have∣∣∣∣∫
Ω

u∇vw
∣∣∣∣ ≤ ‖∇v‖L2‖uw‖L2 ≤ ‖∇v‖L2‖u‖Lq‖w‖Lq∗ ,

where q > 2 is such that σ = 1 − 2
q and q∗ is such that 1

q + 1
q∗ = 1

2 . The injections Lq ⊂ Hσ and Lq
∗ ⊂ H1 are

continuous (see [20]), so that∣∣∣∣∫
Ω

u∇vw
∣∣∣∣ ≤ C‖∇v‖L2‖u‖Hσ‖w‖H1 ≤ C‖u‖Hσ‖v‖H1‖w‖H1 .

From this inequality, we also obtain ∣∣∣∣∫
Ω

u∇wv
∣∣∣∣ ≤ C‖u‖Hσ‖v‖H1‖w‖H1 .

Gathering the two inequalities, together with the definition of c yields the desired result (23).

In order to prove (24), we use the fact that

c(u,v,w) = −
∫

Ω

u∇wv − 1

2

∫
Ω

(∇ · u)vw.

We proceed as before : the first term is treated using ‖uv‖L2 , and the second one with ‖wv‖L2 .

Finally, we recall thatX×Q satisfies the inf-sup condition (also called LBB condition, e.g. [21]): there exists β > 0
only depending on Ω such that, for all p ∈ Q,

β‖p‖L2 ≤ sup
u∈X\{0}

b(u, p)

‖u‖H1

. (25)

2.4 Finite element approximation

Let us introduce a family of uniform and regular meshes Th, indexed by h (typically the size of a triangle). Given an
integer `, and an element K ∈ Th, we denote by P`(K) the space of polynomials of degree less than, or equal to `,
defined on K. We introduce the following finite element spaces

Xh := {vh ∈ C(Ω)d; vh |K∈ Ppu(K)d, ∀K ∈ Th} (26)
Qh := {qh ∈ C(Ω)d; qh |K∈ Ppp(K)d, ∀K ∈ Th} (27)

Wh := {wh ∈ C(Ω)d;wh |K∈ Ppθ (K)d, ∀K ∈ Th} (28)

where pu ≥ 1, pp ≥ 1 and pθ ≥ 1. In the applications, we want to use pu = pp = pθ = 1.
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We are interested in the approximation of the natural convection problem for t ∈ [0; tf ] where tf is a given final
time. Let us choose Nf a number of time steps, and define δt =

tf
Nf

. We denote by tn = nδt for any integer n and
(unh, p

n
h, θ

n
h) ∈ Xh×Qh×Wh our approximation of (un, pn, θn), where un stands for u(tn) (the same for pn, θn).

Introducing the notations

δtu
n
h =

unh − u
n−1
h

δt
, δtθ

n
h =

θnh − θ
n−1
h

δt
,

the discretized system corresponding to (13)-(15) is:

Find (un+1
h , pn+1

h , θn+1
h ) such that, for any (vh, qh, ψh) ∈ Xh ×Qh ×Wh,

b(un+1
h , qh)− γh(pn+1

h , qh) = 0, (29)(
δtu

n+1
h ,vh

)
+

1

Re
a(un+1

h ,vh) + c(un+1
h ,un+1

h ,vh)

+b(vh, p
n+1
h )−

(
fB(θn+1

h )ey,vh
)

=
(
F n+1,vh

)
, (30)(

δtθ
n+1
h , ψh

)
+

1

RePr
ā(θn+1

h , ψh) + c̄(un+1
h , θn+1

h , ψh) =
(
gn+1, ψh

)
. (31)

The resulting system is a non linear problem solved using a Newton algorithm, as in [1]. γh is a positive constant that
might depend on the mesh size. This penalty parameter is the key player in our analysis, and deserve some remarks:

• it is well-known that, using Taylor-Hood element for the velocity-pressure for example allows one to use
γh = 0. However, from a computational point of view, this leads to a invertible matrix with a zero diagonal
block. Hence, it requires some pivoting. Letting γh > 0 removes the necessity of using pivots.

• since Qh is not a subspace of Q (there is no constraint on the mean value of an element of Qh), taking γh > 0
together with the boundary conditions on uh and the Stokes formula ensures that the pressure has zero mean
value. In this respect, this term can be viewed as a penalty term.

• even if the coupleXh×Qh does not satisfy an inf-sup condition, taking γh > 0 will provide the well-posedness
of the linearised system, allowing the use of the Lax-Milgram lemma. In this respect, it can also be viewed as
a stabilization term. See also details in [22, Rem. 4.3, p. 67].

• it is clear that using a constant value for γh cannot lead to convergence when h goes to zero. We will show
however that, with a suitable choice of γh, we can obtain convergence for our problem.

Let us conclude this section with the introduction of suitable projection operators. We assume that there exists a
family of operators Ch : L2(Ω) → Qh that satisfies the following properties: there exists C independent of h such
that, for any 0 6 s < 3

2 , s 6 r 6 1 + pp and q ∈ Hr(Ω), the following inequality holds:

‖q − Chq‖Hs ≤ Chr−s‖q‖Hr . (32)

As projection operators, one might think of the Clément interpolant, or the Scott-Zhang interpolant [23]. Abusing
the notations, we also denote by Ch the H1 projections from X to Xh and from X to Wh. For these operators, (32)
is also satisfied since it can be inferred from their definitions

a(Chu,vh) = a(u,vh) ∀u ∈X,vh ∈ Xh, (33)
ā(Chθ, ψh) = ā(θ, ψh) ∀θ ∈ X,ψh ∈Wh. (34)
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3 Main convergence result

3.1 Notations and assumptions

Let 0 < σ < 1 (close to 0) and define θ̃nh = Chθn. We define (ũnh, p̃
n
h) = PXh,Qhγh,0

(un, pn), that is: for any vh ∈ Xh

and any qh ∈ Qh,

1

Re
a(ũnh,vh) + b(vh, p̃

n
h)− b(ũnh, qh) + γh(p̃nh, qh) =

1

Re
a(un,vh) + b(vh, p

n)− b(un, qh).

The approximations properties of this operator are detailed in Section 4. The errors are decomposed as:

enu = un − unh = (un − ũnh)− (unh − ũ
n
h) = ηnu − ϕnu,

enp = pn − pnh = (pn − p̃nh)− (pnh − p̃nh) = ηnp − ϕnp ,

enθ = θn − θnh =
(
θn − θ̃nh

)
−
(
θnh − θ̃nh

)
= ηnθ − ϕnθ .

We also define Rnu and Rnθ as :
Rnu = ∂tu

n − δtun, Rnθ = ∂tθ
n − δtθn.

We can use (vh, qh, ψh) ∈ Xh×Qh×Wh, as a test function in the weak formulation (13)-(14)-(15) at time tn+1 so
that:

b(un+1, qh) = 0, (35)(
δtu

n+1,vh
)

+
1

Re
a(un+1,vh) + c(un+1,un+1,vh)

+b(vh, p
n+1)−

(
fB(θn+1)ey,vh

)
=

(
F n+1,vh

)
−
(
Rn+1
u ,vh

)
, (36)(

δtθ
n+1, ψh

)
+

1

RePr
ā(θn+1, ψh) + c̄(un+1, θn+1, ψh) =

(
gn+1, ψh

)
−
(
Rn+1
θ , ψh

)
. (37)

In this article, we focus on solutions that exhibit mild regularity properties. This is expressed by the following
assumptions.

Assumption 1. u and θ are bounded in H1 and p is bounded in L2, and we introduce N > 0 such that

∀t ∈ [0; tf ], ‖u(t)‖H1 + ‖p(t)‖L2 + ‖θ(t)‖H1 ≤ N . (38)

Assumption 2. There exists 0 ≤ sθ ≤ pθ such thatu ∈ L∞(0, tf ;H2), ∂tu ∈ L∞(0, tf ;H2), ∂ttu ∈ L∞(0, tf ;L2),
p ∈ L∞(0, tf ;H1), ∂tp ∈ L∞(0, tf ;H1), θ ∈ L∞(0, tf ;H1+sθ ), ∂tθ ∈ L∞(0, tf ;Hsθ ), ∂ttθ ∈ L∞(0, tf ;L2).
We then introduce

M2(u, p, θ) := ‖∂ttu‖2L∞(L2) + ‖∂ttθ‖2L∞(L2) + ‖θ‖2L∞(H1+sθ ) (39)

+ ‖∂tθ‖2L∞(Hsθ ) + ‖u‖2L∞(H2) + ‖p‖2L∞(H1) (40)

+ ‖p‖2L∞(L2) + ‖u‖4L∞(H2) + ‖p‖4L∞(H1) (41)

+ ‖p‖4L∞(L2) + ‖∂tu‖2L∞(H2) + ‖∂tp‖2L∞(H1) + ‖∂tp‖2L∞(L2) (42)

Note that Assumption 1 is redundant with Assumption 2, but we keep it in order to separate terms that are bounded
byN from those bounded by M2. Throughout the paper, we will denote by C a positive constant that is independent
of h and M2. Unless stated otherwise, C might depend onN , Ω, σ and/or the dimensionless parameters Re, Pr and
Ra. Its value may change at every line.
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Theorem 1. Let (u, p, θ) be the solution of (1)-(2)-(3) such that Assumptions 1 and 2 hold. Let 0 < σ < 1 be a
small real number. Then the following error estimates holds for any n 6 Nf :

‖ϕnu‖20 + ‖ϕnθ ‖20 ≤ C
(
δt2‖∂ttu‖2L∞(L2) + δt2‖∂ttθ‖2L∞(L2) + h2sθ‖θ‖2L∞(H1+sθ )

+ h2sθ‖∂tθ‖2L∞(Hsθ ) +
h4−2σ

γ2−σ
h

‖u‖2L∞(H2) +
h4−σ

γ2−σ
h

‖p‖2L∞(H1)

+ γ2
h‖p‖2L∞(L2) +

h4

γ2
h

‖u‖4L∞(H2) +
h4

γ2
h

‖p‖4L∞(H1)

+ γ4
h‖p‖4L∞(L2) +

h4

γ2
h

‖∂tu‖2L∞(H2) +
h4

γ2
h

‖∂tp‖2L∞(H1) + γ2
h‖∂tp‖2L∞(L2)

)
(43)

The proof of this theorem is postponed to Section 5. To get a convergence result, we need the following corollary to
this result.

Corollary 1. Under the assumptions of Theorem 1, the following error estimate holds, for h2 < γh < 1:

‖enu‖20 + ‖enθ ‖20 ≤ C
(
δt2 + h2sθ +

h4−2σ

γ2−σ
h

+ γ2
h

)
M2(u, p, θ). (44)

Proof. Using the triangular inequality, we obtain

‖enu‖20 + ‖enθ ‖20 ≤ 2‖ϕnu‖20 + 2‖ϕnθ ‖20 + 2‖ηnu‖20 + 2‖ηnθ ‖20.

The first two terms correspond to the left hand side of (43), so that

‖ϕnu‖20 + ‖ϕnθ ‖20 ≤
(
δt2 + h2sθ +

h4−2σ

γ2−σ
h

+ γ2
h

)
M2(u, p, θ).

For the last two terms, we use the properties of Ch and ũh, see Eqns. (32) and (71)

‖ηnu‖20 = ‖un − ũnh‖20 ≤ C
(
h4

γ2
h

‖un‖2H2 +
h4

γh
‖pn‖2H1 + γ2

h‖pn‖2L2

)
≤ C

(
h4

γ2
h

+
h4

γh
+ γ2

h

)
M2(u, p, θ),

‖ηnθ ‖20 = ‖θn − Chθn‖20 ≤ Ch2+2sθ‖θn‖2H1+sθ
≤ Ch2+2pθM2(u, p, θ).

Owing to the assumptions on γh, the latter right hand sides are bounded by the right hand side of (44).

Remark 1. The convergence rate is not limited by sθ, therefore we can set sθ = 1 (e.g. pθ = 1 means that we also
use P1 elements for θ). Then the estimate becomes

‖enu‖20 + ‖enθ ‖20 ≤ C
(
δt2 + h2 +

h4−2σ

γ2−σ
h

+ γ2
h

)
M2(u, p, θ).

If we choose γh = h, then we obtain

‖enu‖20 + ‖enθ ‖20 ≤ C
(
δt2 + h2−σ)M2(u, p, θ)

and we get an almost first order accuracy in h, supported by our numerical results, see Section 6.

Remark 2. In Theorem 1 and its corollary, the constant C depends on σ and goes to infinity as σ → 0. Hence, we
do not recover the maximal order of convergence, but we can be as close as desired.
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4 Modified Stokes projection

It is possible to establish a convergence result, similar to Theorem 1, by using Chu and Chp instead of ũh and p̃h.
However, this leads to a predicted convergence order of 1/2 in space, which is clearly not optimal. The purpose
of this section is to design a modified Stokes projection that will help to improve the convergence rate. We call it
modified Stokes projection since, strictly speaking, it is not a projection.

4.1 Definition of a family of operators

Definition 1. For any 0 ≤ λ < 1, we define the bilinear form aλ onX × L2 by

aλ
(
(u, p), (v, q)

)
:=

1

Re
a(u,v) + b(v, p)− b(u, q) + λ(p, q).

We introduce a norm adapted to this bilinear form, viz.

‖u, p‖λ :=
1√
Re
‖u‖H1 +

√
λ‖p‖L2 .

In the following, we will always assume that 0 < λ < 1 and that Re > 1.

Proposition 2. aλ is coercive and continuous with respect to the norm ‖·‖λ. More precisely, there exist C,C ′

independent of λ and Re such that, for any (u, p) ∈X × L2 and (v, q) ∈X × L2,

C ′‖u, p‖2λ ≤ aλ
(
(u, p), (u, p)

)
, (45)∣∣aλ((u, p), (v, q))∣∣ ≤ C

√
Re√
λ
‖u, p‖λ‖v, q‖λ. (46)

The coercivity of aλ directly derives from that of the bilinear form a, while the continuity is obtained from the
continuity of a and b and Cauchy-Schwarz inequalities. Using this bilinear form, we define a family of operators in
the following way:

Definition 2. Let X be a closed subset ofX andQ be a closed subset of L2. For any 0 < λ < 1 and 0 ≤ γ < 1, we
define the operator PX ,Qλ,γ : X × L2 → X ×Q in a weak form. For any (u, p) ∈ X × L2, PX ,Qλ,γ (u, p) = (ũ, p̃) ∈
X ×Q is such that:

∀(v, q) ∈ X ×Q, aλ
(
(ũ, p̃), (v, q)

)
= aγ

(
(u, p), (v, q)

)
. (47)

Owing to the coercivity and continuity of aλ, the operators PX ,Qλ,γ are well-defined. We want to use the operator
PXh,Qhγh,0

to establish convergence results for the natural convection problem. Note that, owing to (47), for (u, p) ∈
X × L2, if we define (uh, ph) = PXh,Qhγh,0

(u, p) and (ũ, p̃) = PX,L2

γh,0
(u, p), then we have

(uh, ph) = PXh,Qhγh,γh
(ũ, p̃). (48)

The modified Stokes projection is defined as PXh,Qhγh,0
. Hence, its properties can be established through the properties

of PXh,Qhγh,γh
and PX,L2

γh,0
. In order to study these two operators, we will repeatedly use Theorem 1.3 from [24] which

can be presented as

Theorem 2. Let f ∈ L2 and g ∈ H1 ∩Q. Let (u, p) ∈X ×Q such that{
−µ∆u+∇p = f ,

∇ · u+ λp = g,
(49)

where µ, λ are positive constants. Then u ∈ H2 and p ∈ H1, and there exists a constant C that depends only on Ω
such that

µ‖u‖H2 + (1 + µλ)‖p‖H1 ≤ C (‖f‖L2 + µ‖g‖H1) . (50)
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4.2 Analysis of the operators

4.2.1 The penalty operator PX,L2

γh,0

In this subsection, we establish convergence estimates for different norms.

Proposition 3. Let u ∈ X and p ∈ Q. Let us introduce (ũ, p̃) = PX,L2

γh,0
(u, p). Then there exists a constant C

independent of γh and Re such that

1√
Re
‖u− ũ‖H1 +

√
Re‖p− p̃‖L2 ≤ Cγh√

Re
‖p‖L2 . (51)

Proof. From the definition of PX,L2

γh,0
, for any (v, q) ∈X × L2, we infer that

aγh
(
(ũ, p̃), (v, q)

)
= aγh

(
(u, p), (v, q)

)
− γh (p, q) .

Using the coercivity of aγh , we obtain

C ′‖u− ũ, p− p̃‖2γh ≤ aγh
(
(ũ− u, p̃− p), (ũ− u, p̃− p)

)
≤ γh |(p, p̃− p)| ≤ γh‖p‖L2‖p̃− p‖L2 . (52)

Instead of directly applying Young’s inequality, we want to replace the norm of (p̃−p) by the one of (ũ−u). Using
(v, 0) as a test function in the definition of PX,L2

γh,0
yields:

∀v ∈X,
1

Re
a(ũ− u,v) + b(v, p̃− p) = 0.

Using the LBB condition (25), we deduce that

β‖p̃− p‖L2 ≤ sup
v∈X\{0}

b(v, p̃− p)
‖v‖H1

= sup
v∈X\{0}

a(u− ũ,v)

‖v‖H1

≤ A

Re
‖u− ũ‖H1 . (53)

Using this inequality in (52) yields

‖u− ũ, p− p̃‖2γh ≤
Cγh
Re
‖p‖L2‖u− ũ‖H1 ≤ Cγh√

Re
‖p‖L2‖u− ũ, p− p̃‖γh , (54)

which in turn implies that

‖u− ũ, p− p̃‖γh ≤
Cγh√
Re
‖p‖L2 .

From this inequality, we obtain
1√
Re
‖u− ũ‖H1 ≤ Cγh√

Re
‖p‖L2 . (55)

Inserting this inequality (55) in (53) yields

√
Re‖p̃− p‖L2 ≤ A

β
√
Re
‖u− ũ‖H1 ≤ Cγh√

Re
‖p‖L2 , (56)

and the desired result is finally obtained from (55) and (56).

Proposition 4. Let u ∈ X ∩ H2 and p ∈ H1 ∩ Q. Let us introduce (ũ, p̃) = PX,L2

γh,0
(u, p). Then ũ ∈ H2,

p̃ ∈ H1 ∩Q and the following estimates hold, for C only depending on Ω:

‖ũ‖H2 ≤ C (‖u‖H2 + γh‖p‖H1) , (57)
‖p̃‖H1 ≤ C‖p‖H1 , (58)

1

Re
‖ũ− u‖H2 +

(
1 +

γh
Re

)
‖p̃− p‖H1 ≤ Cγh

Re
‖p‖H1 . (59)
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Proof. We start by proving (59). Owing to the definition of PX,L2

γh,0
, we have−

1

Re
∆ (ũ− u) +∇ (p̃− p) = 0,

∇ · (ũ− u) + γh (p̃− p) = −γhp.
(60)

Applying Theorem 2 with µ = 1
Re and λ = γh yields (59).

From this inequality, we infer that

‖ũ− u‖H2 ≤ Cγh‖p‖H1 ,

‖p̃− p‖H1 ≤ C‖p‖H1 .

Then (57) and (58) are obtained using triangular inequalities.

4.2.2 The projection operator PXh,Qhγh,γh

Let us now turn our attention to the projection operator PXh,Qhγh,γh
.

Proposition 5. Let 0 6 s 6 pu and 0 6 s′ 6 pp. Let u ∈ X ∩ H1+s and p ∈ H1+s′ ∩ Q. Let us introduce
(uh, ph) = PXh,Qhγh,γh

(u, p). Then the following estimates hold, for C depending only on Ω:

‖u− uh, p− ph‖2γh ≤
C Re

γh

(
h2s

Re
‖u‖2H1+s + h2(1+s′)γh‖p‖2H1+s′

)
, (61)

‖u− uh‖2L2 ≤
C Re3

γ2
h

(
h2(s+1)

Re
‖u‖2H1+s + h4+2s′γh‖p‖2H1+s′

)
. (62)

Proof. From the definition of the projection, for any (vh, qh) ∈ Xh ×Qh, we infer that

aγh
(
(u− uh, p− ph), (vh, qh)

)
= 0.

Using this Galerkin orthogonality and the continuity of aγh , we obtain

aγh
(
(u− uh, p− ph), (u− uh, p− ph)

)
= aγh

(
(u− uh, p− ph), (u− Chu, p− Chp)

)
(63)

≤ C
√
Re

√
γh
‖u− uh, p− ph‖γh‖u− Chu, p− Chp‖γh . (64)

Using the definitions of the norm and aγh , we also infer that

‖u− uh, p− ph‖2γh ≤ Caγh
(
(u− uh, p− ph), (u− uh, p− ph)

)
.

As a result, we obtain

‖u− uh, p− ph‖2γh ≤
C
√
Re

√
γh
‖u− uh, p− ph‖γh‖u− Chu, p− Chp‖γh .

Using Young’s inequality yields

‖u− uh, p− ph‖2γh ≤
C Re

γh
‖u− Chu, p− Chp‖2γh .

which in turn implies that:

‖u− uh, p− ph‖2γh ≤
2C Re

γh

(
1

Re
‖u− Chu‖2H1 + γh‖p− Chp‖2L2

)
. (65)
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Using properties (32) of Ch yields (61).

The L2 estimate is obtained using a Nitsche-Aubin argument. Let us define w ∈X and r ∈ Q such that−
1

Re
∆w +∇r = u− uh,

∇ ·w + γhr = 0.
(66)

Since u− uh ∈ L2, we can apply Theorem 2 and we obtain w ∈ H2, r ∈ H1 together with the estimate

1

Re
‖w‖H2 + ‖r‖H1 ≤ C‖u− uh‖L2 . (67)

Owing to the definition of w and r, we have, for any v ∈X and q ∈ L2

aγh
(
(w, r), (v, q)

)
= (u− uh,v) .

Let us use this identity for v = u− uh and q = ph − p. Then we obtain

‖u− uh‖2L2 = aγh
(
(w, r), (u− uh, ph − p)

)
= aγh

(
(u− uh, p− ph), (w,−r)

)
= aγh

(
(u− uh, p− ph), (w − Chw, Chr − r)

)
.

Owing to the continuity of aγh , we deduce that

‖u− uh‖2L2 ≤
C
√
Re

√
γh
‖u− uh, p− ph‖γh‖w − Chw, r − Chr‖γh (68)

Let us estimate the term ‖w−Chw, r−Chr‖γh . From the definition of the norm and the properties of Ch (see (32)),
we infer that

‖w − Chw, r − Chr‖γh ≤ Ch
(

1√
Re
‖w‖H2 +

√
γh‖r‖H1

)
.

Using the estimate (67) and Re > 1 leads to

‖w − Chw, r − Chr‖γh ≤ Ch
√
Re‖u− uh‖L2 .

Inserting this inequality in (68) yields

‖u− uh‖L2 ≤ C Reh
√
γh
‖u− uh, p− ph‖γh .

Taking the square of this inequality, together with (61) yields (62).

Remark 3. From (61) and (62), one can note that there exists a constant C independent of h, but depending on Ω
and Re such that, for any u ∈X ∩H2 and p ∈ H1 ∩Q,

‖u− uh‖H1 ≤ C h
√
γh

(‖u‖H2 + ‖p‖H1) ,

‖u− uh‖L2 ≤ C h
2

γh
(‖u‖H2 + ‖p‖H1) .

From interpolation theory, we obtain the estimate, for 0 ≤ s ≤ 1 :

‖u− uh‖Hs ≤ C
(

h
√
γh

)2−s

(‖u‖H2 + ‖p‖H1) . (69)
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4.3 Error estimates for the operator PXh,Qh
γh,0

We now have all the tools at hand to prove an approximation result for the operator that we want to use.

Theorem 3. Let u ∈ X ∩ H2 and p ∈ H1 ∩ Q. Let us introduce (uh, ph) = PXh,Qhγh,0
(u, p). Then the following

estimates hold, for C only depending on Ω:

‖u− uh, p− ph‖2γh ≤ C
(
h2

γh
‖u‖2H2 + h2γh‖p‖2H1 +Re h2‖p‖2H1 +

γ2
h

Re
‖p‖2L2

)
, (70)

‖u− uh‖2L2 ≤ C
(
Re2h4

γ2
h

‖u‖2H2 +
Re3h4

γh
‖p‖2H1 + γ2

h‖p‖2L2

)
. (71)

Proof. Let us introduce (ũ, p̃) = PX,L2

γh,0
(u, p) so that we have (uh, ph) = PXh,Qhγh,γh

(ũ, p̃). We start from triangular
inequalities to get

‖u− uh, p− ph‖2γh ≤ 2‖u− ũ, p− p̃‖2γh + 2‖ũ− uh, p̃− ph‖2γh .

Let us now bound each term separately. From Proposition 3, we have the estimate

‖u− ũ, p− p̃‖2γh ≤
Cγ2

h

Re
‖p‖2L2 .

For the second term, we use Proposition 5 with s = 1 and s′ = 0 to obtain

‖ũ− uh, p̃− ph‖2γh ≤
CReh2

γh

(
1

Re
‖ũ‖2H2 + γh‖p̃‖2H1

)
.

From (57), we infer that

‖ũ− uh, p̃− ph‖2γh ≤
CReh2

γh

(
1

Re
‖u‖2H2 +

γ2
h

Re
‖p‖2H1 + γh‖p‖2H1

)
.

Thus we have the desired estimate

‖u− uh, p− ph‖2γh ≤ C
(
h2

γh
‖u‖2H2 + h2γh‖p‖2H1 +Re h2‖p‖2H1 +

γ2
h

Re
‖p‖2L2

)
.

We proceed similarly for the L2 estimate, bounding ‖ũ−uh‖L2 using Proposition 5 and the error estimate (59), and
bounding ‖ũ− u‖L2 by

√
Re‖ũ− u, p̃− p‖γh and using (51).

Remark 4. Note that Eqns. (70)-(71) give a convergence result only if γh → 0. The leading terms in (71) suggest to
take γh ∼ Re1/2h, which would lead to order 1 in the L2 norm, which is consistent with the results of the numerical
simulations presented in Section 6.

Remark 5. We may need approximation results for theHs norm, for 0 < s < 1. There exists a constantC depending
on Ω and Re, but not on h, such that

‖u− uh‖2Hs ≤ C
(
h4−2s

γ2−s
h

(
‖u‖2H2 + ‖p‖2H1

)
+ γ2

h‖p‖2L2

)
. (72)

This is obtained using the same decomposition as before, together with (69).

Let us end this section with a stability result.

Proposition 6. Let (u, p) ∈ X × Q such that ∇ · u = 0. Let us introduce (uh, ph) = PXh,Qhγh,0
(u, p). There exists

C independent of u and p such that

‖u− uh‖H1 ≤ C (‖u‖H1 + ‖p‖L2) . (73)

12



Proof. From the definition of (uh, ph) and the fact that∇ · u = 0, we infer that

aγh ((uh, ph), (uh, ph)) = a0 ((u, p), (uh, ph)) =
1

Re
a(u,uh) + b(uh, p).

Owing to the coercivity of aγh and the continuity of a and b, we deduce that

α

Re
‖uh‖2H1 ≤ C‖uh‖H1 (‖u‖H1 + ‖p‖L2) .

Using the triangular inequality yields

‖u− uh‖H1 ≤ ‖u‖H1 + ‖uh‖H1 ≤ C (‖u‖H1 + ‖p‖L2) .

5 Proof of Theorem 1

We are now able to prove Theorem 1, using the previously defined operator PXh,Qhγh,0
. Owing to the definition of

ϕn+1
p , ϕn+1

u , ηn+1
p , ηn+1

u , summing (29)-(30) and subtracting (35)-(36) with corresponding test functions ϕn+1
p ,

ϕn+1
u yields:

(δtϕ
n+1
u , ϕn+1

u ) +
1

Re
a(ϕn+1

u , ϕn+1
u ) + γh(ϕn+1

p , ϕn+1
p )

= (δtη
n+1
u , ϕn+1

u ) +
1

Re
a(ηn+1

u , ϕn+1
u ) + b(ϕn+1

u , ηn+1
p )

+ c(un+1,un+1, ϕn+1
u )− c(un+1

h ,un+1
h , ϕn+1

u )− Ra

Re2Pr
(en+1
θ ey, ϕ

n+1
u )

+
(
Rn+1
u , ϕn+1

u

)
− b(ηn+1

u , ϕn+1
p ) + γh(ηn+1

p , ϕn+1
p )− γh(pn+1, ϕn+1

p )

= (δtη
n+1
u , ϕn+1

u ) + aγh
(
(ηn+1
u , ηn+1

p ), (ϕn+1
u , ϕn+1

p )
)

+ c(un+1,un+1, ϕn+1
u )− c(un+1

h ,un+1
h , ϕn+1

u )− Ra

Re2Pr
(en+1
θ ey, ϕ

n+1
u )

+
(
Rn+1
u , ϕn+1

u

)
− γh(pn+1, ϕn+1

p ) (74)

Owing to the definition of ũn+1
h and p̃n+1

h , we obtain

aγh
(
(ηn+1
u , ηn+1

p ), (ϕn+1
u , ϕn+1

p )
)
− γh(pn+1, ϕn+1

p )

= a0

(
(un+1, pn+1), (ϕn+1

u , ϕn+1
p )

)
− aγh

(
(ũn+1

h , p̃n+1
h ), (ϕn+1

u , ϕn+1
p )

)
= 0.

Thus, (74) simply reads

(δtϕ
n+1
u , ϕn+1

u ) +
1

Re
a(ϕn+1

u , ϕn+1
u ) + γh(ϕn+1

p , ϕn+1
p )

= (δtη
n+1
u , ϕn+1

u ) +
(
Rn+1
u , ϕn+1

u

)
− Ra

Re2Pr
(en+1
θ ey, ϕ

n+1
u )

+ c(un+1,un+1, ϕn+1
u )− c(un+1

h ,un+1
h , ϕn+1

u ). (75)

The left hand side of (75) is bounded from below by

1

2δt

(
‖ϕn+1

u ‖2L2 − ‖ϕnu‖2L2 + ‖ϕn+1
u − ϕnu‖2L2

)
+

α

Re
‖ϕn+1

u ‖2H1 + γh‖ϕn+1
p ‖2L2
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so we are left with the right hand side to bound from above. Using Young’s inequality, we obtain∣∣(δtηn+1
u , ϕn+1

u )
∣∣ ≤ ‖δtηn+1

u ‖L2‖ϕn+1
u ‖L2 ≤ 1

2
‖δtηn+1

u ‖2L2 +
1

2
‖ϕn+1

u ‖2L2 (76)∣∣(Rn+1
u , ϕn+1

u )
∣∣ ≤ ‖Rn+1

u ‖L2‖ϕn+1
u ‖L2 ≤ 1

2
‖Rn+1

u ‖2L2 +
1

2
‖ϕn+1

u ‖2L2 , (77)

where κu and κp are some positive constants, independent of h, yet to be chosen.

The Boussinesq term is treated using the decomposition of en+1
θ :∣∣(en+1

θ ey, ϕ
n+1
u )

∣∣ ≤ ‖en+1
θ ‖L2‖ϕn+1

u ‖L2 ≤
(
‖ηn+1
θ ‖L2 + ‖ϕn+1

θ ‖L2

)
‖ϕn+1

u ‖L2

≤ 1

2
‖ηn+1
θ ‖2L2 +

1

2
‖ϕn+1

θ ‖2L2 + ‖ϕn+1
u ‖2L2 (78)

The trilinear terms are treated using

c(un+1,un+1, ϕn+1
u )− c(un+1

h ,un+1
h , ϕn+1

u )

= c(un+1, ηn+1
u , ϕn+1

u ) + c(ηn+1
u ,un+1, ϕn+1

u )− c(ηn+1
u , ηn+1

u , ϕn+1
u )

− c(ϕn+1
u ,un+1, ϕn+1

u ) + c(ϕn+1
u , ηn+1

u , ϕn+1
u ) (79)

The first three terms are handled using (23)-(24) and a Young’s inequality, for 0 < σ < 1, and the last two are treated
with (21) and the Young’s inequality xy ≤ x4

4 + 3y4/3

4 :∣∣c(un+1, ηn+1
u , ϕn+1

u )
∣∣ ≤ C‖un+1‖H1‖ηn+1

u ‖Hσ‖ϕn+1
u ‖H1

≤ C2

4κu
‖un+1‖2H1‖ηn+1

u ‖2Hσ + κu‖ϕn+1
u ‖2H1 , (80)∣∣c(ηn+1

u ,un+1, ϕn+1
u )

∣∣ ≤ C‖un+1‖H1‖ηn+1
u ‖Hσ‖ϕn+1

u ‖H1

≤ C2

4κu
‖un+1‖2H1‖ηn+1

u ‖2Hσ + κu‖ϕn+1
u ‖2H1 , (81)∣∣c(ηn+1

u , ηn+1
u , ϕn+1

u )
∣∣ ≤ C‖ηn+1

u ‖2H1‖ϕn+1
u ‖H1

≤ C2

4κu
‖ηn+1
u ‖4H1 + κu‖ϕn+1

u ‖2H1 , (82)∣∣c(ϕn+1
u ,un+1, ϕn+1

u )
∣∣ ≤ C‖ϕn+1

u ‖H1‖un+1‖H1‖ϕn+1
u ‖1/2H1 ‖ϕn+1

u ‖1/2L2

≤ C‖un+1‖H1‖ϕn+1
u ‖3/2H1 ‖ϕn+1

u ‖1/2L2

≤ C4

4κ3
u

‖un+1‖4H1‖ϕn+1
u ‖2L2 +

3κu
4
‖ϕn+1

u ‖2H1 , (83)∣∣c(ϕn+1
u , ηn+1

u , ϕn+1
u )

∣∣ ≤ C‖ϕn+1
u ‖H1‖ηn+1

u ‖H1‖ϕn+1
u ‖1/2H1 ‖ϕn+1

u ‖1/2L2

≤ C‖ηn+1
u ‖H1‖ϕn+1

u ‖3/2H1 ‖ϕn+1
u ‖1/2L2

≤ C4

4κ3
u

N 4‖ϕn+1
u ‖2L2 +

3κu
4
‖ϕn+1

u ‖2H1 . (84)

Note that for the last term, we used (73) to bound ‖ηn+1
u ‖H1 . Gathering all these estimates leads to

1

2δt

(
‖ϕn+1

u ‖2L2 − ‖ϕnu‖2L2 + ‖ϕn+1
u − ϕnu‖2L2

)
+

α

Re
‖ϕn+1

u ‖2H1 + γh‖ϕn+1
p ‖2L2

≤ 1

2
‖Rn+1

u ‖2L2 +
1

2
‖δtηn+1

u ‖2L2 +
Re

2Re2Pr
‖ηn+1
θ ‖2L2 +

Ra

2Re2Pr
‖ϕn+1

θ ‖2L2 (85)

+
9κu
2
‖ϕn+1

u ‖2H1 + C ′u‖ϕn+1
u ‖2L2 +

C2

4κu
‖ηn+1
u ‖4H1 +

C2

2κu
‖un+1‖H1‖un+1‖2Hσ , (86)
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where C ′u = 1 + Ra
Re2Pr + C4

2κ3
u
N 4.

Choosing κu = α
9Re , there exists C independent of h, such that

1

2δt

(
‖ϕn+1

u ‖2L2 − ‖ϕnu‖2L2 + ‖ϕn+1
u − ϕnu‖2L2

)
+

α

2Re
‖ϕn+1

u ‖2H1 +
γ

2
‖ϕn+1

p ‖2L2

≤ C
(
‖Rn+1

u ‖2L2 + ‖δtηn+1
u ‖2L2 + ‖ηn+1

θ ‖2L2 + ‖ηn+1
u ‖2Hσ + ‖ηn+1

u ‖4H1

+ ‖ϕn+1
θ ‖2L2 + ‖ϕn+1

u ‖2L2

)
. (87)

We proceed similarly to get an estimate on the temperature, based on the approximation properties of Ch.

1

2δt

(
‖ϕn+1

θ ‖2L2 − ‖ϕnθ ‖2L2 + ‖ϕn+1
θ − ϕnθ ‖2L2

)
+

ᾱK

2Re Pr
‖ϕn+1

θ ‖2H1

≤ C
(
‖Rn+1

θ ‖2L2 + ‖δtηn+1
θ ‖2L2 + ‖ηn+1

θ ‖2H1 + ‖ϕn+1
θ ‖2L2

)
. (88)

Summing the last two estimates and removing some positive terms from the left hand side yields:

1

2δt

(
‖ϕn+1

u ‖2L2 − ‖ϕnu‖2L2 + ‖ϕn+1
θ ‖2L2 − ‖ϕnθ ‖2L2

)
(89)

≤ C
(
‖Rn+1

u ‖2L2 + ‖δtηn+1
u ‖2L2 + ‖ηn+1

θ ‖2L2 + ‖ηn+1
u ‖2Hσ + ‖ηn+1

u ‖4H1

+ ‖Rn+1
θ ‖2L2 + ‖δtηn+1

θ ‖2L2 + ‖ηn+1
θ ‖2H1 + ‖ϕn+1

u ‖2L2 + ‖ϕn+1
θ ‖2L2

)
.

Before applying Gronwall lemma, we want to bound all the terms in the right hand side (except for the last two),
using the properties of Chθ, ũh, p̃h. We first notice that

‖Rn+1
u ‖L2 ≤ Cδt‖∂ttu‖L∞(L2), ‖Rn+1

θ ‖L2 ≤ Cδt‖∂ttθ‖L∞(L2),

‖ηn+1
θ ‖L2 ≤ ‖ηn+1

θ ‖H1 ≤ Chsθ‖θ‖L∞(H1+sθ ), ‖δtηn+1
θ ‖L2 ≤ Chsθ‖∂tθ‖L∞(Hsθ ).

Then, using the linearity of the operator PXh,Qhγh,0
together with estimates (72) and (70), we infer that

‖ηn+1
u ‖2Hσ ≤ C

(
h4−2σ

γ2−σ
h

‖u‖2L∞(H2) +
h4−σ

γ2−σ
h

‖p‖2L∞(H1) + γ2
h‖p‖2L∞(L2)

)
,

‖ηn+1
u ‖4H1 ≤ C

(
h4

γ2
h

‖u‖4L∞(H2) +
h4

γ2
h

‖p‖4L∞(H1) + γ4
h‖p‖4L∞(L2)

)
,

‖δtηn+1
u ‖2L2 ≤ C

(
h2

γh
‖δtun+1‖2H2 +

h2

γh
‖δtpn+1‖2H1 + γ2

h‖δtpn+1‖2L2

)
,

≤ C
(
h2

γh
‖∂tu‖2L∞(H2) +

h2

γh
‖∂tp‖2L∞(H1) + γ2

h‖∂tp‖2L∞(L2)

)
.

Owing to these estimates, we introduce the new quantity

E(u, p, θ, δt, h, γ) := δt2‖∂ttu‖2L∞(L2) + δt2‖∂ttθ‖2L∞(L2) + h2sθ‖θ‖2L∞(H1+sθ )

+ h2sθ‖∂tθ‖2L∞(Hsθ ) +
h4−2σ

γ2−σ
h

‖u‖2L∞(H2) +
h4−σ

γ2−σ
h

‖p‖2L∞(H1)

+ γ2
h‖p‖2L∞(L2) +

h4

γ2
h

‖u‖4L∞(H2) +
h4

γ2
h

‖p‖4L∞(H1)

+ γ4
h‖p‖4L∞(L2) +

h2

γh
‖∂tu‖2L∞(H2) +

h2

γh
‖∂tp‖2L∞(H1) + γ2

h‖∂tp‖2L∞(L2),
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so that (89) yields

1

δt

(
‖ϕn+1

u ‖2L2 − ‖ϕnu‖2L2 + ‖ϕn+1
θ ‖2L2 − ‖ϕnθ ‖2L2

)
(90)

≤ C
(
E(u, p, θ, δt, h, γ) + ‖ϕn+1

θ ‖2L2 + ‖ϕn+1
u ‖2L2

)
. (91)

Finally, we use the discrete Gronwall lemma, and we obtain the desired estimate, provided we choose u0
h and θ0

h

such that ϕ0
u = 0 and ϕ0

θ = 0.

6 Numerical results

In this section, we present numerical results to support theoretical estimates. It is worth mentioning that we performed
the tests on domains that are not of class C1,1. We start by illustrating (70) and (71) before turning our attention to
the natural convection problem. We also illustrate the gain in computational cost allowed by the use of the linear
element instead of the standard Taylor-Hood elements. All simulations are performed using the open-source software
FreeFem++ [25, 26].

6.1 The modified projection PXh,Qh
γh,0

Given (u, p), we compute (ũh, p̃h) ∈ Xh ×Qh such that

∀(vh, qh) ∈ Xh ×Qh, aγh
(
(ũh, p̃h), (vh, qh)

)
= a0

(
(u, p), (vh, qh)

)
. (92)

We want to illustrate the results of Theorem 3. The results for the P1-P1 elements (i.e. pu = pp = 1) are better
than expected. Therefore, we also performed simulations using P1-P0 elements, in order to illustrate the sharpness
of our error estimates (70)-(71). The choice of γh modifies the estimates and consequently the order of convergence.
Different values of γh are tested to reach the best estimate. We present some numerical results for the following
values of γh:

• γh = 10−7, which is not supposed to yield any convergence, neither for the velocity nor the pressure;

• γh = Re1/3h2/3, which is the best choice for the convergence of velocity in the H1 norm: this should yield
convergence of order 2/3 for the velocity (L2 and H1 norms) and order 1/3 for the pressure;

• γh = Re1/2h, which is the best choice for the convergence of velocity in the L2 norm: this should yield
convergence for the velocity of order 1 in the L2 norm, order 1/2 in the H1 norm, but no convergence in
pressure;

• γh = Reh2, which is not supposed to yield any convergence, and even explosion for the pressure.

6.1.1 Steady Burggraf flow (case MP-Bur)

We first focus on the Burggraf manufactured solution, see [1]. This case is a time-independent recirculating flow
inside a square cavity [0, 1]× [0, 1]. It is similar to the well-known lid driven cavity flow, but the velocity singularity
at the top corners of the cavity is avoided. The exact solution of the flow is:

u1(x, y) = χg′(x)h′(y), (93)
u2(x, y) = −χg′′(x)h(y),

p(x, y) = p̃(x, y)− 1

|Ω|

∫
Ω

p̃(x, y),
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with χ > 0 is a scaling parameter and functions and the function p̃, g and h are defined by:

p̃(x, y) =
χ

Re

(
h(3)(y)g(x) + g′′(x)h′(y)

)
+
χ2

2
g′(x)2

(
h(y)h′′(y)− h′(y)2

)
(94)

g(x) =
x5

5
− x4

2
+
x3

3
,

h(y) = y4 − y2.

Note that the velocity at the top border of the cavity is:

u1(x, 1) = 2χ(x4 − 2x3 + x2), u2(x, 1) = 0, (95)

which ensures the continuity of the velocity at the corners (u(0, 1) = u(1, 1) = 0), since non-slip walls are imposed
for the other borders: u(x, 0) = u(0, y) = u(1, y) = 0. The Reynolds number Re is taken equal to 1 and χ equal to
8.

In all the tables, the column ”rate” reports the computed order of convergence based on the computed errors. Empty
cells mean that the iterative solver did not converge.

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 4.42E-03 5.27E-02 2.32E-02 3.92E-03
1/40 1.14E-03 1.95 3.63E-02 0.54 1.21E-02 0.94 1.01E-03 1.96
1/80 2.93E-04 1.96 2.44E-02 0.57 6.25E-03 0.96 2.58E-04 1.97

1/160 7.44E-05 1.98 1.61E-02 0.60 3.17E-03 0.98 6.55E-05 1.98
1/200 4.78E-05 1.98 1.40E-02 0.62 2.54E-03 0.99 4.21E-05 1.98

Table 1: Case MP-Bur : ‖u− uh‖L2 for P1-P1 elements.

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 2.09E+05 4.38E-01 5.01E-01 8.45E+00
1/40 5.49E+04 1.93 2.97E-01 0.56 2.82E-01 0.83 8.91E+00 -0.08
1/80 1.41E+04 1.96 2.00E-01 0.57 1.56E-01 0.85 9.15E+00 -0.04

1/160 3.56E+03 1.98 1.32E-01 0.59 8.57E-02 0.86 9.27E+00 -0.02
1/200 2.29E+03 1.99 1.16E-01 0.61 7.08E-02 0.86 9.30E+00 -0.01

Table 2: Case MP-Bur : ‖p− ph‖L2 for P1-P1 element

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 3.11E-01 3.57E-01 2.79E-01 2.85E-01
1/40 1.59E-01 0.97 2.16E-01 0.72 1.41E-01 0.98 1.45E-01 0.97
1/80 8.09E-02 0.98 1.35E-01 0.68 7.09E-02 0.99 7.37E-02 0.98

1/160 4.08E-02 0.99 8.48E-02 0.67 3.55E-02 1.00 3.71E-02 0.99
1/200 3.27E-02 0.99 7.32E-02 0.66 2.84E-02 1.00 2.97E-02 0.99

Table 3: Case MP-Bur : ‖u− uh‖H1 for P1-P1 element
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We note from Tables 1-2-3 that (P1-P1) elements give the expected behaviour for γh ∼ Re1/3h2/3 and γh ∼ Re1/2h.
Nevertheless, we find a better performance than expected for γh ∼ 10−7 and γh ∼ Re h2. However, the predicted
behaviour from Theorem 3 is recovered with (P1-P0) elements, see Tables 4-5-6.

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 1.52E-01 5.39E-02 2.88E-02 9.09E-02
1/40 1.53E-01 -0.01 3.66E-02 0.56 1.45E-02 0.99 9.10E-02 0.00
1/80 1.53E-01 0.00 2.45E-02 0.58 7.30E-03 0.99 9.11E-02 0.00
1/160 1.53E-01 0.00 1.61E-02 0.60 3.67E-03 0.99 9.11E-02 0.00
1/200 1.40E-02 0.62 2.94E-03 1.00

Table 4: Case MP-Bur : ‖u− uh‖L2 for P1-P0 element

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 1.27E+06 1.22E+00 3.06E+00 5.26E+01
1/40 6.39E+05 0.99 9.76E-01 0.32 3.15E+00 -0.04 1.06E+02 -1.01
1/80 3.20E+05 1.00 7.72E-01 0.34 3.19E+00 -0.02 2.12E+02 -1.00

1/160 1.60E+05 1.00 6.09E-01 0.34 3.22E+00 -0.01 4.24E+02 -1.00
1/200 5.64E-01 0.34 3.22E+00 -0.01

Table 5: Case MP-Bur : ‖p− ph‖L2 for P1-P0 element

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 1.46E+00 3.60E-01 3.07E-01 9.04E-01
1/40 1.47E+00 0.00 2.17E-01 0.73 1.58E-01 0.96 8.93E-01 0.02
1/80 1.47E+00 0.00 1.35E-01 0;69 8.04E-02 0.98 8.91E-01 0.00

1/160 1.46E+00 0.00 8.49E-02 0.67 4.05E-02 0.99 8.90E-01 0.00
1/200 7.32E-02 0.66 3.24E-02 0.99

Table 6: Case MP-Bur : ‖u− uh‖H1 for P1-P0 element

6.1.2 Steady natural convection (case MP-NC)

The first test case MP-Bur is an academic validation, on a regular manufactured solution. We also assess the accuracy
of the modified Stokes projection on a more realistic case.

To do so, we consider the classical problem of the thermally driven square cavity [0, 1] × [0, 1], filled with air,
described by the system of equations (1)-(3). The left wall is kept at a constant hot temperature θh = 0.5 and the
right wall is kept at a constant cold temperature θc = −0.5. Top and bottom walls are adiabatic. Natural convection
flow is computed for the Rayleigh number Ra = 104. The Prandtl number is set to Pr = 0.71 and the Reynolds

number to Re =
√

Ra
Pr .

We compute a reference solution with (P2-P1-P2) finite elements for the velocity, pressure and temperature on a fine
fixed grid with mesh size h = 1/500. γh is taken equal to 0. The non linear system (29)-(31) is solved using a

18



Newton algorithm. The initial state consists of motionless air (u = 0), with a linear distribution of the temperature.
For the time integration, we use a second-order Gear (BDF2) scheme and set δt = h. It has been proven in [7] that
this choice ensures convergence. Therefore, we use this result as reference solution.

The computations are performed until a steady state is reached. Then we use the computed (u, p) in the right hand
side of (92). The results are similar to the results for Case MP-Bur and still in agreement with theoretical estimates.
Since the results are similar, we only present theL2 error on the velocity and theL2 error on the pressure in Tables 7-8
(P1-P1) and Tables 9-10 (P1-P0).

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 6.86E-03 4.19E-02 3.51E-02 6.31E-03
1/40 1.72E-03 2.00 2.77E-02 0.59 1.86E-02 0.92 1.60E-03 1.98
1/80 4.28E-04 2.00 1.81E-02 0.62 9.56E-03 0.96 4.01E-04 2.00

1/160 1.07E-04 2.00 1.16E-02 0.64 4.85E-03 0.98 1.00E-04 2.00
1/320 7.42E-03 0.65 2.44E-03 0.99

Table 7: Case MP-NC : ‖u− uh‖L2 for P1-P1-element

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 7.33E+00 6.94E-03 6.53E-03 1.43E-02
1/40 2.31E+00 1.66 4.15E-03 0.74 3.50E-03 0.90 1.36E-02 0.08
1/80 1.25E+00 0.89 2.51E-03 0.73 1.84E-03 0.93 1.33E-02 0.03
1/160 1.25E+00 0.00 1.54E-03 0.71 9.58E-04 0.94 1.31E-02 0.01
1/320 9.49E-04 0.69 5.01E-04 0.93

Table 8: Case MP-NC : ‖p− ph‖L2 for P1-P1-element

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 1.35E-01 4.27E-02 3.71E-02 8.78E-02
1/40 1.35E-01 0.00 2.80E-02 0.61 1.99E-02 0.90 8.78E-02 0.00
1/80 1.35E-01 0.00 1.81E-02 0.63 1.03E-02 0.95 8.78E-02 0.00

1/160 1.35E-01 0.00 1.16E-02 0.64 5.23E-03 0.97 8.78E-02 0.00
1/320 7.43E-03 0.65 2.64E-03 0.99

Table 9: Case MP-NC : ‖u− uh‖L2 for P1-P0-element
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γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 7.49E+01 1.33E-02 1.49E-02 9.23E-02
1/40 4.44E+01 0.75 1.05E-02 0.34 1.48E-02 0.00 1.88E-01 -1.03
1/80 3.58E+01 0.31 8.32E-03 0.33 1.53E-02 -0.05 3.79E-01 -1.01

1/160 1.43E+01 1.32 6.62E-03 0.33 1.58E-02 -0.04 7.59E-01 -1.00
1/320 5.26E-03 0.33 1.60E-02 -0.02

Table 10: Case MP-NC : ‖p− ph‖L2 for P1-P0-element

As a result, even though (P1-P1) elements give better results than expected, the numerical results are in accordance
with our error estimates. These estimates seems to be sharp since the predicted rates are recovered for (P1-P0)
elements.

6.2 Natural convection in 2D

The convergence of our operator being assessed, we can illustrate the convergence properties for the natural convec-
tion problem. Note that in numerical simulations, we used a second order discretization in time, which only improves
the accuracy with respect to δt. The remaining of the estimate (44) still holds.

As for the modified projection, we illustrate Corollary 44 on two examples. The first one consists of a manufactured
solution, see [27]. The second example is a physical case of natural convection, compared to the reference solution
described in Section 6.1.2. A second validation is obtained by comparing the vertical velocity profile at mid-domain
(y = 0.5) to a spectral approximation [28].

Leading terms γh expected order

δt, h2, h
4−σ

γ2−σ
h

, γ2
h

10−7 Stability
Re1/3h2/3 Convergence with an order 2/3
Re1/2h Convergence with an order 1
Reh2 Stability

Table 11: Expected order of convergence for ‖u− uh‖L2 and ‖θ − θh‖L2

6.2.1 Manufactured solution (case NC-Nour)

We first consider the manufactured time-dependent solution suggested in [27]:

u1(x, y, t) = (δU0 + αu sin(t)) cos(x+ γ1t) sin(y + γ2t), (96)
u2(x, y, t) = − (δU0 + αu sin(t)) sin(x+ γ1t) cos(y + γ2t),

θ(x, y, t) = θ̄ + (δθ0 + αt sin(t)) cos(x+ γ1t) sin(y + γ2t),

p(x, y, t) = P̄ + (δP0 + αp sin(t)) sin(x+ γ1t) cos(y + γ2t),

The values of the constants are reported in Table 12. The corresponding source terms are:
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γ1 γ2 P̄ θ̄ δP0 δθ0 δU0 αp αu αt

0.1 0.1 0 1.0 0.1 1.0 1.0 0.05 0.4 0.1

Table 12: Parameters for case NC-Nour (96).

fu1
= αu cos(t) cos(a) sin(b)− Uc γ1 sin(a) sin(b) + Uc γ2 cos(a) cos(b) (97)
−Uc u1(x, y, t) sin(a) sin(b) + Uc u2(x, y, t) cos(a) cos(b) + Pc cos(a) cos(b)

+
2

Re
u1(x, y, t),

fu2 = −αu cos(t) sin(a) cos(b)− Uc γ1 cos(a) cos(b) + Uc γ2 sin(a) sin(b)

−Uc u1(x, y, t) cos(a) cos(b) + Uc u2(x, y, t) sin(a) sin(b)− Pc sin(a) sin(b)

+
2

Re
u2(x, y, t)− Ra

PrRe2
T (x, y, t),

fθ = αt cos(t) cos(a) sin(b)− θc γ1 sin(a) sin(b) + θc γ2 cos(a) cos(b)

−θc u1(x, y, t) sin(a) sin(b) + θc u2(x, y, t) cos(a) cos(b) +
2K

RePr
θc cos(a) sin(b),

where a = (x+ γ1t), b = (y+ γ2t) and Uc = (δU0 +αu sin(t)), θc = (δθ0 +αu sin(t)), Pc = (δP0 +αu sin(t)).

We want to assess the accuracy of our estimates with respect to h. Since we use a second order scheme in time,
we choose δt ' h. Dimensionless parameters are chosen to emulate the convection of air, with a Rayleigh number
Ra = 106, a Prandtl number Pr = 0.71 and Reynolds number Re =

√
Ra/Pr. The errors are computed at the

final time tf = π/2.

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 8.79E-04 1.49E-02 1.71E-02 2.48E-02
1/40 2.15E-04 2.03 9.89E-03 0.59 9.48E-03 0.85 8.31E-03 1.58
1/80 5.25E-05 2.03 6.48E-03 0.61 4.99E-03 0.93 2.22E-03 1.90

1/160 1.30E-05 2.01 4.19E-03 0.63 2.56E-03 0.96 5.64E-04 1.98
1/320 2.69E-03 0.64 1.30E-03 0.98 1.42E-04 1.99

Table 13: Case NC-Nour : ‖u− uh‖L2 for P1-P1-P1 element

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 1.38E-03 4.57E-03 5.25E-03 8.16E-03
1/40 3.37E-04 2.03 2.41E-03 0.92 2.31E-03 1.19 2.03E-03 2.01
1/80 8.47E-05 1.99 1.47E-03 0.71 1.14E-03 1.02 5.31E-04 1.94

1/160 2.12E-05 2.00 9.34E-04 0.66 5.75E-04 0.99 1.35E-04 1.98
1/320 5.93E-04 0.65 2.88E-04 0.99 3.38E-05 2.00

Table 14: Case NC-Nour : ‖θ − θh‖L2 for P1-P1-P1 element
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γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 1.51E+04 6.81E-03 8.07E-03 1.44E-02
1/40 3.81E+03 1.99 4.71E-03 0.53 4.51E-03 0.84 3.96E-03 1.87
1/80 9.52E+02 2.00 2.81E-03 0.74 2.17E-03 1.06 1.09E-03 1.86
1/160 2.38E+02 2.00 1.70E-03 0.73 1.04E-03 1.06 5.27E-04 1.05
1/320 1.05E-03 0.70 5.11E-04 1.03 5.25E-04 0.01

Table 15: Case NC-Nour : ‖p− ph‖L2 for P1-P1-P1 element

Since the error estimate of natural convection involves the error estimates of modified projection, we observe the
same behaviour as before i.e. the (P1-P1) finite elements seem to yield a better convergence rate than expected.
However, these results are in good agreement with our estimates. In particular, the correct convergence rates for
the velocity and temperature are observed for γh = Re1/3h2/3 and γh = Re1/2h and the case γh = 10−7 yields
computational issues for small values of h.

6.2.2 Natural convection in a square (case NC-Sq)

We are now interested in a physical case. We consider here the reference solution described in Section 6.1.2. We
numerically solve equations describing the classical natural convection with a finite element scheme (P1-P1-P1) and
we compare our results to this reference solution. The Rayleigh number is taken as Ra = 104, the Prandtl number
Pr = 0.71 and the Reynolds number is Re =

√
Ra/Pr. The results are presented in Tables 16-17-18.

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 5.57E-03 1.15E-02 6.08E-03 5.28E-03
1/40 1.39E-03 2.00 7.00E-03 0.71 2.34E-03 1.38 1.34E-03 1.98
1/80 3.47E-04 2.00 4.43E-03 0.66 1.08E-03 1.12 3.36E-04 1.99

1/160 8.68E-05 2.00 2.81E-03 0.66 5.30E-04 1.03 8.50E-05 1.98
1/320 3.23E-05 1.43 8.09E-04 1.80 2.65E-04 1.00 3.21E-05 1.40

Table 16: Case NC-Sq : ‖u− uh‖L2 for P1-P1-P1 elements

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate
1/20 4.33E-03 1.76E-02 8.86E-03 6.59E-03
1/40 1.08E-03 2.01 1.04E-02 0.76 3.65E-03 1.28 1.67E-03 1.98
1/80 2.74E-04 1.97 6.42E-03 0.69 1.66E-03 1.14 4.24E-04 1.98

1/160 1.00E-04 1.45 4.06E-03 0.66 8.21E-04 1.01 1.41E-04 1.58
1/320 5.54E-05 0.86 1.20E-03 1.76 4.25E-04 0.95 6.70E-05 1.08

Table 17: Case NC-Sq : ‖θ − θh‖L2 for P1-P1-P1 elements
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Figure 1: Case NC-Sq: vertical velocity profile at y = 0.5; comparison with results from [28]. The mesh size is
h = 1/80.

γh ∼ 10−7 γh ∼ Re1/3h2/3 γh ∼ Re1/2h γh ∼ Reh2

h err rate err rate err rate err rate

1/20 2.34E-02 7.73E-03 1.15E-02 1.46E-02
1/40 2.17E-02 0.11 4.05E-03 0.93 7.22E-03 0.67 1.36E-02 0.10
1/80 2.10E-02 0.04 2.13E-03 0.93 4.32E-03 0.74 1.33E-02 0.04

1/160 2.08E-02 0.02 1.15E-03 0.89 2.51E-03 0.78 1.31E-02 0.01
1/320 2.07E-02 0.01 7.13E-04 0.69 1.46E-03 0.79 1.31E-02 0.01

Table 18: Case NC-Sq : ‖p− ph‖L2 for P1-P1-P1 elements

Once again, the results are in accordance with the theoretical results, even though the case γh = Re h2 exhibits
slightly better results than expected.

We strengthen our code validation by comparing the final state with a profile obtained by a spectral code [28]. The
vertical vFE velocity profile is extracted at mid-domain (y = 0.5) and plotted in Figure 1 for the pair (P1-P1) and
the different values of γh and compared to the reference solution vLQ. The difference ‖vFE − vLQ‖L2 is reported in
table 19.
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γh = 10−7 γh = Re1/3h2/3 γh = Re1/2h γh = Reh2

h err rate err rate err rate err rate
1/20 5.08E-03 7.76E-03 5.14E-03 4.85E-03
1/40 6.01E-04 3.08 1.55E-03 2.32 6.32E-04 3.02 5.57E-04 3.12
1/80 7.09E-05 3.08 4.29E-04 1.85 8.30E-05 2.93 6.43E-05 3.11

1/160 7.36E-06 3.27 1.42E-04 1.60 1.09E-05 2.93 6.59E-06 3.29
1/320 7.34E-07 3.33 1.01E-05 3.82 1.24E-06 3.13 6.29E-07 3.39

Table 19: Case NC-Sq: error on the centerline velocity ‖vFE − vLQ‖L2 .

Differences decrease when the mesh resolution is increased. Our comparison with the spectral code guarantees
that our code gives a correct final solution. The numerical results for these different cases demonstrate the validity
of Corollary (44). The numerical results we presented confirm that the choice of γh = Re1/3h2/3 is suitable to
obtain convergence on both velocity and pressure, but with non optimal rate 2/3 for the velocity. If one is interested
only in the velocity accuracy, then the choice γh = Re1/2h yields the best convergence rate on the velocity, while
loosing convergence on the pressure. In summary, these two choices along with P1-P1 finite elements are suitable
for simulating natural convection problems.

6.3 Computational cost

6.3.1 2D-Natural Convection

As stated before, the non linear system (29)-(30)-(31) is solved using a Newton algorithm. The number of Newton
iterations does not change when changing the order of the polynomials. Thus, using a direct solver for the linear
systems that are involved ensures a computational gain for the linear element compared to the quadratic element.
However, it is worth mentioning that, the use of an iterative solver (e.g. GMRES as in our simulations) yields a
reduction of the computational cost, even though the resulting systems are more ill-conditioned.

We compare the computation time between (P1-P1-P1) and (P2-P1-P2) finite elements for some of the previously
tested cases. In parallel, we compare the number of degrees of freedom for both pairs related to the mesh size h.
Since we observe similar behaviours for different values of h, we report in Table 20 the values for h = 1/160. The
number of degrees of freedom for the (P2-P1-P2) is about three times that of (P1-P1-P1) elements.

Case NC-Nour Case NC-Sq
γh P1-P1-P1 P2-P1-P2 rate P1-P1-P1 P2-P1-P2 rate

10−7 40 683 8 641 0.21 84 282 16 607 0.20
Re1/3h2/3 2 465 8 371 3.40 3 432 12 438 3.62
Re1/2h 2 419 8 424 3.48 4 499 12 714 2.83
Reh2 2 470 8 575 3.47 13 951 14 591 1.05
ndof 103 684 335 044 3.23 103 684 335 044 3.23

Table 20: CPU-time (s) for different choices of γh, with h = 1/160.

It is interesting to note that the choice of γh with Taylor-Hood elements (P2-P1) for velocity and pressure, and P2 for
temperature does not affect the computational time, while it has a visible impact for the (P1-P1-P1) computations.
The choices γh ∼ Re1/3h2/3 and γh ∼ Re1/2h, for which we have proven convergence of the scheme, give the
smallest computation times. This choices also bring a noticeable gain compared to P2 computations.
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6.3.2 3D Natural Convection

We now consider the same case of natural convection of air described in 6.1.2 and add the third dimension in space.
We thus simulate the thermally driven cubic cavity [0, 1]3, filled with air. The temperature is fixed on the left (hot)
wall surface and the right (cold) wall surface. All the other lateral surfaces are adiabatic. No-slip walls are applied
for the velocity on all boundary surfaces. Simulations are made for Ra = 104 on a fixed and uniform mesh with
h = 1/40 for the finite element pairs (P1-P1-P1) and (P2-P1-P2). CPU-time for different values of γh is given in
Table 21.

γh P1-P1-P1 P2-P1-P2 rate
10−7 7 761 20 059 2.62

Re1/3h2/3 5 476 17699 3.23
Re1/2h 5 713 17 964 3.14
Reh2 6 043 19 084 3.16
ndof 344 605 2 194 685 6.37

Table 21: CPU-time for 3D-Natural-Convection.

As for the 2D case, we observe a non negligible reduction in the computational time, which supports the use of
low-order finite elements.

7 Conclusion

We introduced a new projection operator to establish an error estimate for the approximation of the natural convection
problem with linear elements. Using this operator and choosing a stabilization γh accordingly, we are able to recover
almost first order accuracy in space. The error estimates on the projection and for the natural convection problem
are validated with extensive examples, which indicate that the predicted convergence rate is optimal. Moreover, the
choice of the stabilization parameter can be done in two ways. Using γh ∼ Re1/2h gives a better convergence
for the velocity, but does not yield any convergence for the pressure. Using γh ∼ Re1/3h2/3 would allow a slow
convergence in pressure, even though it reduces the accuracy for the velocity. In both cases, the computational time
is reduced, when compared to the standard Taylor-Hood elements for the fluid equations. This makes the suggested
scheme tractable for applications, even for 3D problems.

Preliminary simulations (not shown here) suggest that low order finite element approximation might also be used for
more complex applications, such as simulation of PCM (e.g. cases presented in [1, 4]). This remains to be proven
using similar techniques : however, the analysis of convergence is more involved, due to the phase change which
adds non linear terms in the energy equation.
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[28] P. Le Quéré, Accurate solutions to the square thermally driven cavity at high Rayleigh number, Computational
Fluids 20 (1991) 24–41.

27


	Introduction
	Framework and discretization
	Framework
	Weak formulation
	Properties of bilinear and trilinear forms
	Finite element approximation

	Main convergence result
	Notations and assumptions

	Modified Stokes projection
	Definition of a family of operators
	Analysis of the operators
	The penalty operator Ph,0bold0mu mumu XX2005/06/28 ver: 1.3 subfig packageXXXX,L2
	The projection operator Ph,hXh,Qh

	Error estimates for the operator Ph,0Xh,Qh

	Proof of Theorem 1
	Numerical results
	The modified projection Ph,0Xh,Qh
	Steady Burggraf flow (case MP-Bur)
	Steady natural convection (case MP-NC)

	Natural convection in 2D
	Manufactured solution (case NC-Nour)
	Natural convection in a square (case NC-Sq)

	Computational cost
	2D-Natural Convection
	3D Natural Convection


	Conclusion

