The final phase of inspiral of neutron stars: Realistic equations of state - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advances in Space Research Année : 2007

The final phase of inspiral of neutron stars: Realistic equations of state

Résumé

Coalescing compact star binaries are expected to be among the strongest sources of gravitational radiation to be seen by laser interferometers. We present calculations of the final phase of inspiral of equal mass irrotational neutron star binaries and strange quark star binaries. Six types of equations of state at zero temperature are used three realistic nuclear equations of state of various softness and three different MIT bag models of strange quark matter. We study the precoalescing stage within the Isenberg Wilson Mathews approximation of general relativity using a multidomain spectral method. The gravitational-radiation driven evolution of the binary system is approximated by a sequence of quasi-equilibrium configurations at fixed baryon number and decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital instability for binary strange quark stars and by the mass-shedding limit for neutron star binaries. The gravitational wave frequency at the ISCO, which marks the end of the inspiral phase, is found to be ˜1100 1460 Hz for two 1.35 M&sun; irrotational strange stars described by the MIT bag model and between 800 and 1230 Hz for neutron stars.

Dates et versions

hal-03733192 , version 1 (21-07-2022)

Identifiants

Citer

Dorota Gondek-Rosinska, Michal Bejger, Tomasz Bulik, Éric Gourgoulhon, Pawel Haensel, et al.. The final phase of inspiral of neutron stars: Realistic equations of state. Advances in Space Research, 2007, 39, pp.271-274. ⟨10.1016/j.asr.2006.09.021⟩. ⟨hal-03733192⟩
3 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More