Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser
Résumé
Mode-locked femtosecond lasers have revolutionized the field of optical metrology by allowing the realization of ultra-stable phase-coherent links between the optical-frequency domain and the radiofrequency range. In this work we have used the electro-optic effect in ZnTe (ref. 5) to demonstrate that the frequency and the phase of a 2.7 THz quantum cascade laser can be actively stabilized to the nth harmonic of the 90 MHz repetition rate (frep) of a commercial, mode-locked erbium-doped fibre laser. The beating between the stabilized quantum cascade laser frequency and the harmonic of frep yield a signal-to-noise ratio of 80 dB in a bandwidth of 1 Hz. The technique is inherently broadband, that is, it is applicable to any quantum cascade laser source provided that its frequency falls within the spectral bandwidth of the femtosecond laser (~5 THz). Furthermore, it is an ideal tool with which to control the phase of different quantum cascade lasers using light and compact fibre technology rather than superconducting bolometer mixers.