On the stability of totally upwind schemes for the hyperbolic initial boundary value problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

On the stability of totally upwind schemes for the hyperbolic initial boundary value problem

Résumé

In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit totally upwind scheme in 1D with numerical boundary conditions. The underlying approximated continuous problem is a hyperbolic partial differential equation. Our approach is based on the Uniform Kreiss-Lopatinskii Condition, using linear algebra and complex analysis to count the number of zeros of the associated determinant. The study is illustrated with the Beam-Warming scheme together with the simplified inverse Lax-Wendroff procedure at the boundary.
Fichier principal
Vignette du fichier
BLBS22.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03732720 , version 1 (21-07-2022)
hal-03732720 , version 2 (18-01-2023)
hal-03732720 , version 3 (16-06-2023)

Licence

Identifiants

Citer

Benjamin Boutin, Pierre Le Barbenchon, Nicolas Seguin. On the stability of totally upwind schemes for the hyperbolic initial boundary value problem. 2022. ⟨hal-03732720v1⟩
285 Consultations
118 Téléchargements

Altmetric

Partager

More