How Can a Teacher Make Learning From Sparse Data Softer? Application to Business Relation Extraction
Résumé
Business Relation Extraction between market entities is a challenging information extraction task that suffers from data imbalance due to the over-representation of negative relations (also known as No-relation or Others) compared to positive relations that corresponds to the taxonomy of relations of interest. This paper proposes a novel solution to tackle this problem, relying on binary soft-labels supervision generated by an approach based on knowledge distillation. When evaluated on a business relation extraction dataset, the results suggest that the proposed approach improves the overall performances, beating state-of-the art solutions for data imbalance. In particular, it improves the extraction of under-represented relations as well as the detection of false negatives.
Origine | Fichiers produits par l'(les) auteur(s) |
---|