Communication Dans Un Congrès Année : 2022

Filtering-based endmember estimation from snapshot spectral images

Résumé

We propose a new endmember estimation method for snapshot spectral imaging (SSI) systems using Fabry-Perot filters. Indeed, such systems only provide a part of the spectral content of a classical multispectral camera and restoring the full datacube from an SSI matrix is named "demosaicing". However, we recently found that a joint unmixing and demosaicing method allowed a much better unmixing performance than a two-stage approach consisting of a demosaicing step followed by an unmixing one. In this paper, we propose a new approach to estimate endmembers from the SSI image without requiring a demosaicing step. It inverts the Fabry-Perot filters and extends the "pure pixel" framework to the SSI sensor patch level. Our proposed scheme is found to significantly outperform SotA methods.
Fichier principal
Vignette du fichier
kampgdgr_LRMA_2022.pdf (193.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03728944 , version 1 (16-02-2023)

Identifiants

  • HAL Id : hal-03728944 , version 1

Citer

Kinan Abbas, Matthieu Puigt, Gilles Delmaire, Gilles Roussel. Filtering-based endmember estimation from snapshot spectral images. 2nd Workshop on Low-Rank Models and Applications (LRMA'22), Sep 2022, Mons, Belgium. ⟨hal-03728944⟩
70 Consultations
45 Téléchargements

Partager

More