Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2022

Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature

Résumé

Abstract Stimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (T VPT ), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its T VPT , the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise “on–off” switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments.

Dates et versions

hal-03726380 , version 1 (18-07-2022)

Identifiants

Citer

Kamonchanok Thananukul, Chariya Kaewsaneha, Pakorn Opaprakasit, Nadia Zine, Abdelhamid Elaïssari. Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature. Scientific Reports, 2022, 12 (1), pp.10906. ⟨10.1038/s41598-022-15069-x⟩. ⟨hal-03726380⟩
16 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More