Machine learning model for gas-liquid interface reconstruction in CFD numerical simulations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Machine learning model for gas-liquid interface reconstruction in CFD numerical simulations

Résumé

The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids. A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids. We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes. We first develop a methodology to generate a synthetic dataset based on paraboloid surfaces discretized on unstructured meshes. We then train a GNN based model and perform generalization tests. Our results demonstrate the efficiency of a GNN based approach for interface reconstruction in multi-phase flow simulations in the industrial context.
Fichier principal
Vignette du fichier
GNN_VoF.pdf (5.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03721729 , version 1 (12-07-2022)

Identifiants

  • HAL Id : hal-03721729 , version 1

Citer

Tamon Nakano, Michele Alessandro Bucci, Jean-Marc Gratien, Thibault Faney, Guillaume Charpiat. Machine learning model for gas-liquid interface reconstruction in CFD numerical simulations. 2022. ⟨hal-03721729⟩
135 Consultations
101 Téléchargements

Partager

More