Sulci <scp>3D</scp> mapping from human cranial endocasts: A powerful tool to study hominin brain evolution - Archive ouverte HAL
Article Dans Une Revue Human Brain Mapping Année : 2022

Sulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution

Edwin John de Jager
Muriel Mescam
  • Fonction : Auteur
  • PersonId : 842862
  • IdRef : 129992208
Caroline Fonta
Amélie Beaudet

Résumé

Key questions in paleoneurology concern the timing and emergence of derived cerebral features within the human lineage. Endocasts are replicas of the internal table of the bony braincase that are widely used in paleoneurology as a proxy for reconstructing a timeline for hominin brain evolution in the fossil record. The accurate identification of cerebral sulci imprints in endocasts is critical for assessing the topographic extension and structural organisation of cortical regions in fossil hominins. High-resolution imaging techniques combined with established methods based on population-specific brain atlases offer new opportunities for tracking detailed endocranial characteristics. This study provides the first documentation of sulcal pattern imprints from the superolateral surface of the cerebrum using a population-based atlas technique on extant human endocasts. Human crania from the Pretoria Bone Collection (South Africa) were scanned using micro-CT. Endocasts were virtually extracted, and sulci were automatically detected and manually labelled. A density map method was applied to project all the labels onto an averaged endocast to visualise the mean distribution of each identified sulcal imprint. This method allowed for the visualisation of inter-individual variation of sulcal imprints, for example, frontal lobe sulci, correlating with previous brain-MRI studies and for the first time the extensive overlapping of imprints in historically debated areas of the endocast (e.g. occipital lobe). In providing an innovative, non-invasive, observerindependent method to investigate human endocranial structural organisation, our analytical protocol introduces a promising perspective for future research in paleoneurology and for discussing critical hypotheses on the evolution of cognitive abilities among hominins.
Fichier principal
Vignette du fichier
de jager et al 2022.pdf (3.69 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03718225 , version 1 (08-07-2022)

Identifiants

Citer

Edwin John de Jager, Laurent Risser, Muriel Mescam, Caroline Fonta, Amélie Beaudet. Sulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution. Human Brain Mapping, 2022, ⟨10.1002/hbm.25964⟩. ⟨hal-03718225⟩
63 Consultations
138 Téléchargements

Altmetric

Partager

More