A bayesian inference of material parameters from DIC data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A bayesian inference of material parameters from DIC data

Mainak Bhattacharyya
Pierre Feissel

Résumé

The framework of the study is to obtain deterministic and probabilistic approximations of the material parameters from measurement informations acquired from digital image correlation data. The deterministic process involves formulation of an optimal control approach. The probabilistic framework inculcates this optimal control method in a Bayesian inference framework. A Markov Chain Monte Carlo sampling method is applied to obtain the posterior probability density function, along with a radial basis function type interpolation for the numerical frugality of the samplings.
Fichier principal
Vignette du fichier
Bhattacharria_Feissel_CSMA2022.pdf (782.64 Ko) Télécharger le fichier
Format typeAnnex_abstract

Dates et versions

hal-03717570 , version 1 (08-07-2022)

Identifiants

  • HAL Id : hal-03717570 , version 1

Citer

Mainak Bhattacharyya, Pierre Feissel. A bayesian inference of material parameters from DIC data. 15ème colloque national en calcul des structures, Université Polytechnique Hauts-de-France [UPHF], May 2022, 83400 Hyères-les-Palmiers, France. ⟨hal-03717570⟩
47 Consultations
43 Téléchargements

Partager

More