Robust quantum dot charge autotuning with Bayesian Neural Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022
Fichier non déposé

Dates et versions

hal-03717569 , version 1 (08-07-2022)

Identifiants

  • HAL Id : hal-03717569 , version 1

Citer

Victor Yon, Stefanie Czischek, Yann Beilliard, Michel Pioro-Ladrière, Gaudreau Louis, et al.. Robust quantum dot charge autotuning with Bayesian Neural Networks. Machine Learning in Natural Sciences: from Quantum Physics to Nanoscience and Structural Biology, Sep 2022, Hamburg, Germany. ⟨hal-03717569⟩
31 Consultations
0 Téléchargements

Partager

More