Supersolvable descent for rational points - Archive ouverte HAL
Article Dans Une Revue Algebra & Number Theory Année : 2023

Supersolvable descent for rational points

Résumé

We construct an analogue of the classical descent theory of Colliot-Thélène and Sansuc in which algebraic tori are replaced with finite supersolvable groups. As an application, we show that rational points are dense in the Brauer-Manin set for smooth compactifications of certain quotients of homogeneous spaces by finite supersolvable groups. For suitably chosen homogeneous spaces, this implies the existence of supersolvable Galois extensions of number fields with prescribed norms, generalising work of Frei-Loughran-Newton.
Fichier principal
Vignette du fichier
ant-v18-n4-p05-s.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03714606 , version 1 (19-09-2024)

Licence

Identifiants

Citer

Yonatan Harpaz, Olivier Wittenberg. Supersolvable descent for rational points. Algebra & Number Theory, In press, 18 (4), pp.787-814. ⟨10.2140/ant.2024.18.787⟩. ⟨hal-03714606⟩
92 Consultations
7 Téléchargements

Altmetric

Partager

More