Twin-width IV: ordered graphs and matrices - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Twin-width IV: ordered graphs and matrices

Résumé

We establish a list of characterizations of bounded twin-width for hereditary, totally ordered binary structures. This has several consequences. First, it allows us to show that a (hereditary) class of matrices over a finite alphabet either contains at least $n!$ matrices of size $n \times n$, or at most $c^n$ for some constant $c$. This generalizes the celebrated Stanley-Wilf conjecture/Marcus-Tardos theorem from permutation classes to any matrix class over a finite alphabet, answers our small conjecture [SODA '21] in the case of ordered graphs, and with more work, settles a question first asked by Balogh, Bollob\'as, and Morris [Eur. J. Comb. '06] on the growth of hereditary classes of ordered graphs. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width.
Fichier principal
Vignette du fichier
main-STOC.pdf (3.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03714452 , version 1 (13-08-2022)

Identifiants

Citer

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, et al.. Twin-width IV: ordered graphs and matrices. STOC 2022, Jun 2022, Rome, Italy. ⟨hal-03714452⟩
60 Consultations
107 Téléchargements

Altmetric

Partager

More