Anomaly Detection for 5G Softwarized Infrastructures with Federated Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Anomaly Detection for 5G Softwarized Infrastructures with Federated Learning

Résumé

We present how to distribute an anomaly detection framework at the state of the art, called SYRROCA (SYstem Radiography and ROot Cause Analysis), for edge computing and 5G environment, using federated learning. The goal is to leverage on the distributed nature of federated learning to support data locality and local training of artificial intelligence modules, such as anomaly detection modules needed for closed-loop automation systems. We describe how the different functional modules interact and can be demonstrated.
Fichier principal
Vignette du fichier
m21672-bin_ruba final.pdf (205.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03712114 , version 1 (02-07-2022)

Identifiants

Citer

Salah Bin Ruba, Nour-El-Houda Yellas, Stefano Secci. Anomaly Detection for 5G Softwarized Infrastructures with Federated Learning. 2022 1st International Conference on 6G Networking (6GNet), Jul 2022, Paris, France. ⟨10.1109/6GNet54646.2022.9830390⟩. ⟨hal-03712114⟩
303 Consultations
507 Téléchargements

Altmetric

Partager

More