
HAL Id: hal-03712114
https://hal.science/hal-03712114

Submitted on 2 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly Detection for 5G Softwarized Infrastructures
with Federated Learning

Salah Bin Ruba, Nour-El-Houda Yellas, Stefano Secci

To cite this version:
Salah Bin Ruba, Nour-El-Houda Yellas, Stefano Secci. Anomaly Detection for 5G Softwarized Infras-
tructures with Federated Learning. 2022 1st International Conference on 6G Networking (6GNet),
Jul 2022, Paris, France. �10.1109/6GNet54646.2022.9830390�. �hal-03712114�

https://hal.science/hal-03712114
https://hal.archives-ouvertes.fr


Anomaly Detection for 5G Softwarized
Infrastructures with Federated Learning

Salah Bin Ruba, Nour El-houda Yellas, Stefano Secci
Cnam, Paris, France. {first-name.last-name}@cnam.fr

Abstract—We present how to distribute an anomaly detection
framework at the state of the art, called SYRROCA (SYstem
Radiography and ROot Cause Analysis), for edge computing and
5G environment, using federated learning. The goal is to leverage
on the distributed nature of federated learning to support data
locality and local training of artificial intelligence modules, such
as anomaly detection modules needed for closed-loop automation
systems. We describe how the different functional modules
interact and can be demonstrated.

Index Terms—Federated Learning, anomaly detection, autoen-
coders

I. INTRODUCTION

Closed-loop automation systems are expected to be more
deeply integrated in 6G systems than they are in the 5G
system. Indeed, while the 5G system specification does plan
for the integration of artificial intelligence modules, they
mostly refer to the monitoring of 5G network functions or the
acceleration of radio access functions. A hot topic in current
research is finding a feasible and scalable way to support
cross-domain, cross-technology, inter-domain and hierarchical
closed-loop systems such that no or little human intervention is
needed in the reconfiguration of a highly softwarized network
infrastructure stack.

The Monitor-Analyze-Plan-Execute (MAPE) approach to
closed-loop automation [1] is often taken as a reference in
the design of the different subsystems needed for network
automation. The first two steps are particularly challenging
in that a high number of features to observe and analyze
exist for a geographically distributed and highly composite
system as the 5G one, and its ongoing evolution with edge
computing penetration. Anomaly detection is in particular
considered as an important module of the analysis subsystems,
in that it triggers the decision-making plans to reconfigure the
infrastructure stack and make it resilient against the diverse
set of impairments that can take place.

At the state of the art, the SYRROCA (SYstem Radio-
graphy and ROot Cause Analysis) framework was recently
proposed as an anomaly detection system for softwarized
infrastructures [2]. It has a machine learning engine to monitor
the infrastructure, making use of LSTM (Long-Short Term
Memory) autoencoders for spotting anomalies from a high
number of features time-series collected at multiple network
and system subsystems, in a centralized way; in [2] it is
applied to the virtualized IP-Multimedia Subsystem use-case.
Its application to various use-cases is possible thanks to a
certain modularity of the autoencoder core. Nonetheless, its

actual implementability to 5G and edge computing environ-
ments, which can be highly distributed and require stringent
latency and resource efficiency guarantees, does call for a form
of decentralization that we describe in this paper.

The paper is organized as follows. We introduce the 5G-
customized anomaly detection framework in Section II. Its
distribution using federated learning is presented in Section III.
Section IV introduces the experimental setting. Finally, we
present demonstration plans and perspectives in this area.

II. REFERENCE ANOMALY DETECTION FRAMEWORK

We describe how we customized the SYRROCA frame-
work [2] for the 5G environment.

We leverage on a multi-layer LSTM Neural Network (NN)
because such systems are optimized to learn both short and
long-time correlations and seasonality in time-series, hence
allowing to capture the behaviour of complex multivariate
sequences. More precisely, LSTM NNs use encoders and
decoders [3] in order to form a deep autoencoder to train
metrics. An autoencoder is composed of two blocks:

• Encoder: it compresses the original high-dimension input
into the low-dimension latent space;

• Decoder: it reconstructs input from the latent space, likely
with larger output layers.

In fact, LSTM autoencoders are trained to reconstruct the
normal working conditions of a given system, i.e., based on
a representation of the normal operation of the system [4],
with minimum errors. When they fail in reconstructing these
nominal conditions, the error increases. This occurrence can
be translated as an anomaly.

To adapt the SYRROCA framework to the 5G environment,
as depicted in Figure 1, we group metrics from a reference
5G infrastructure into component-specific groups, i.e. CPU,
Memory, Network, Radio and Disk, at different infrastructure
levels, namely physical level, virtual level and Radio Access
Network (RAN) level.

We exploit a dataset of few thousands of time-series samples
related to an emulated end-to-end 5G system using available
open-source software stacks for the different systems, as
described in [4].

Although the SYRROCA framework proves its algorithmic
capacity to spot anomalies and support fine-grained root cause
analysis as shown in [2], it cannot be directly applied to
perform real-time anomaly detection scenarios of distributed
low-latency infrastructures because of the following practical
limitations: (i) it cannot scale with the increasing size of data



collected at different levels and for several groups of resources,
(ii) it cannot ensure low-latency training and inference because
of the high data volume and its impact on link and node
utilization, for high-frequency collection rates, and (iii) it
cannot guarantee data privacy, since the collected data needs to
be centralized at one location. To cope with these limitations,
we propose its distribution using federated learning.

Fig. 1: Anomaly detection framework.

III. FEDERATED LEARNING DEPLOYMENT OF THE
ANOMALY DETECTION FRAMEWORK

Federated Learning (FL) is a distributed ML technique,
where the training is carried out on multiple network nodes.
The whole process is governed by a central server, which
is responsible for the initialization and assignment of hyper-
parameters [5].

In order to achieve a satisfactory level of accuracy, global
models, resulting from the aggregation of local model pa-
rameters at the aggregation servers, are exchanged iteratively
between the FL server and the distributed FL clients. The so-
updated model is used for inference, while allowing to have a
global view of the system thanks to the aggregation step.

Our FL framework is implemented using Tensorflow Keras
library for building and training the ML models at the clients
side. For what concerns the aggregation algorithm at the
server side, we use Federated Averaging approach (also called
FedAvg) [6]; FedAvg, besides being computationally efficient,
is sufficient for our data that is not highly heterogeneous (high
heterogeneity may require a more sophisticated aggregation

algorithm). Nonetheless, other aggregation algorithms may be
further considered.

We use the Remote Procedure Calls (RPC) Python library
called gRPC [7] to implement the communication between the
FL server and clients, as gRPC has the ability to run proce-
dures and code routines on remote machines by serializing
and marshalling objects. In this sense, the exchanged training
functions, ML models and initialization parameters between
the central server and the participating nodes, are treated as
objects and transmitted as function parameters.

We adapt the general FL process to the anomaly detection
framework along the following steps:

• Client registration: each client registers with the FL
server to be able to participate in the training task;

• Parameter initialization: consists of initializing the hyper-
parameters and the LSTM autoencoders at the server side;

• Parameter sharing: during this step, the server sends the
LSTM autoencoder model, the hyper-parameters and the
process configuration to the clients;

• Model training: each client trains the autoencoder model
with its own available data;

• Parameter aggregation: after each round of training, the
model parameters are exchanged with the server and the
global model is updated, either for inference or for a new
round of training.

We stop the FL training after a fixed number of rounds,
depending on the desired accuracy of the inference anomaly
detection model.

As depicted in Figure 2, in the reference framework, both
encoder and decoder layers are composed of two LSTM cells
and one dropout regularization level to prevent over-fitting
that could make the autoencoder input and output similar
(i.e., no learning happens). Other factors that can effect the
performance of the training are the hyper-parameters, which
must be carefully selected. In general, the batch size and the
number of epochs are selected to be proportional to the number
of training samples.

In order to build an effective ML model, the autoencoder
has to be designed in a such way that it is light, fast to train and
able to produce a real representation on the trained metrics.

A. Data preprocessing and LSTM AE training

To perform realistic experiments, we use the 5G3E (5G End-
to-End Emulation) dataset [4] to train and test our anomaly
detection framework. The dataset is collected in a duration
of 15 days, 14 days where the system runs under normal
conditions - used for the training phase - and 1 day where
different components of the infrastructure undergoe injected
abnormal functional conditions. We feed the 5G3E data to the
LSTM autoencoders to learn the normal 5G system state.

During the training phase, data is fed as input to the
autoencoders in order to learn how to map the input met-
rics to a compact representation through the latent space of
the autoencoder. As already mentioned, each autoencoder is
responsible of learning the nominal state of the system based



Fig. 2: Autoencoder architecture.

on one type of resource. To do so, a preprocessing step of the
dataset is needed.

In fact, data preprocessing consists of (i) grouping data by
type of resource; we split the overall dataset into sub-datasets
having similar type of features (e.g. a sub-dataset could be for
CPU-related features); (ii) reshaping the input data for LSTM
networks into number of samples × number of steps ×
number of features, where the number of steps represents
a sequence of past observations given as input in order to map
to the output observation.

When data is preprocessed, features are grouped according
to the resource type. Each sub-dataset is fed to a dedicated
autoencoder, where all autoencoders are sharing the same
architecture. This reduces the complexity of the architecture
and the training time.
The final goal is to minimize the reconstruction error, for
which we use the Mean Square error (MSE). In fact, high
MSE values, compared to those obtained during the training,
indicate whether the metrics significantly deviate from the
learned latent space representation during run-time. This is
considered as an anomalous system state.

The anomaly behavior injection is done with different
intensities in order to test the sensitivity of our model to
anomaly severity, as explained in [4].

B. Hyper-parameters setting

We train our LSTM autoencoder while varying the number
of distributed FL nodes in order to demonstrate the effect
of the distributed architecture on the efficiency of both the
training time and the quality of learning.

We use Kubernetes [8] to deploy the FL architecture. In
fact, each FL entity is deployed using one pod, on which
the LSTM autoencoder model at the clients side and the
aggregation algorithm at the server side run. In addition, it
is worth-mentioning that for each entity, we implement as
much LSTM autoencoder models as resources and for each
component-level data, where these models are supposed to run
in parallel, allowing to detect anomalies at multiple layers of
the system.

Once the nodes finish training, a threshold value is recom-
puted for each metric group; in our case, as for SYRROCA,
we use the 99th-quantile value from the input dataset. At
the test phase, this threshold is utilized to spot anomalies.
In fact, all samples whose MSE exceeds the threshold value
are considered as anomalies. It is worth-mentioning that the

threshold value should be set rigorously since it plays an
important role in distinguishing between normal and abnormal
values. In Table I, we summarize the hyper-parameters used
for the experimental evaluation of the proposed framework.

Optimizer Adam
Loss function MSE
Dropout rate 0.2%
Learning rate 0.01
Batch size 64
Number of epochs 50 (early stopping activated)
Number of rounds 5
LSTM Activation function elu
LSTM recurrent activation function sigmoid
FL node sampling 100%
Number of participating FL 1, 2, 4, 8

TABLE I: Hyper-parameters for FL anomaly detection

C. Data load-balancing strategy

As deployment strategy of the federated learning frame-
work, we adopt an over-the-top edge-computing friendly ap-
proach as described in Figure 3, were FL nodes are deployed
as servers possibly detached from the actual sources of data,
yet supposed to be in strong proximity with the sources. This
implies the adoption of a data pipe-lining system able to
distribute data or make data available at FL nodes in runtime.

Fig. 3: Flat load-balancing approach.

IV. TECHNICAL DEMONSTRATION

We precise in the following additional details related to the
technical demonstration of the framework.

A. Anomaly detection setting

In order to evaluate the resulted FL model, we use the
5G3E [4] testset, produced by injecting different anomalies;
the anomaly injection is done with different intensities in order
to test the sensitivity of our model to anomaly severity. The
main goal is to be able to detect anomalous events which can
affect system performance, regardless of the anomaly behavior



type. In the technical demonstration we show how the injected
anomalies affect the following system performance:

• CPU load: to test the effect of CPU overload on the
system.

• Bandwidth limitation: to show what effect a limited
bandwidth has on the running state of system resources.

• Packet delivery: different packet loss rates are considered.
• Link restoration: like failure between different compo-

nents of the infrastructure.

B. Data pipe-lining emulation

We are in the process of evaluating different possible data
pip-lining able to make a high number of time-series available
over a network.

In the meantime, in order to emulate the FL system, we
dispatch the data from the 5G3E dataset to the training
nodes. To emulate data arrival at FL nodes, we construct a
dedicated layer for data collection with a single repository to
save collected metrics, and mechanisms for data batching and
integration. This layer provides the data-lake needed for The
FL nodes by sharing a single data repository.

To demonstrate a real world case, the framework is trained
under time constraints; i.e. the data is not completely fed
into the system, instead only a specific number of samples
is batched to the training process. This number is selected to
respect the stringent latency induced by the infrastructure. In
our case the maximum number of samples does not exceed
1000 per round. During training, each node fetches a subset
of data, where the whole data in the data-lake is consumed by
the participating nodes in rounds.

Each node has a different view of the system performance
on which it relies to train the AE. The aggregation of parame-
ters at the central server to constitute the global model allows
to have a full representation of the system state.

Once finished local training, the nodes transmit there locally
trained models to the FL server. The trained models learn a
subset of the normal running state of the infrastructure. At the
FL server, these fragments of knowledge are aggregated to re-
flect the entirety of the infrastructure. As the training advances
in consuming more samples, the framework gradually builds
the knowledge on the system.

Eventually the FL server produces a trained model on the
whole representation of the infrastructure state. This model is
then used for inference.

C. System state characterization

To characterize and understand the anomalies detected by
the framework, we leverage on state graph and radiography
visualization techniques at the state of the art:

• Radiography visualization [9], consists of a compact
representation to exhibit the final results to system users
and operators. It is obtained combining the MSE with a
service metric to get a 2D density plot made with Kernel
Density Estimation (KDE).

• Anomalous state graph [2] where directed state graphs
are used to visualize the evolution of the running system

across the nominal and the degraded states, indicating the
most deviated resource group(s) for a given anomaly.

V. PERSPECTIVES

We synthetically presented a federated learning framework
extending and adapting a centralized framework at the state of
the art. We explain how LSTM encoders are used to calculate
the MSEs that determine the deviation of the system from
the nominal state. Different experiment methodologies mimic
real world situations that occur in 5G systems and beyond-5G
systems where the penetration of AI is expected to increase.

Further work will have to address a number of challenges
of the proposed system. First, data pipe-lining and the impact
of data transmission and propagation delays are aspects that
need to be studied and evaluated. The heterogeneity and the
fluctuation of FL nodes computing power are also factors
expected to affect training precision. This also stands for
the number of FL nodes that are deployed: the higher their
number, the lower the individual training time but the lower
the detection accuracy. These trade-offs need to be studied and
lead to adequate system design choices and assessment.

ACKNOWLEDGEMENT

This work was funded by the H2020 AI@EDGE (https:
//aiatedge.eu; grant nb. 101015922), the IA/AMI-5G INFLU-
ENCE project, and the ANR PARFAIT project (grant nb:
ANR-21-CE25-0013).

REFERENCES

[1] Autonomic. Computing. “An architectural blueprint for
autonomic computing.” In: IBM White Paper (2006),
pp. 1–6.

[2] Alessio Diamanti, Jos Manuel Snchez Vlchez, and Ste-
fano Secci. “An AI-empowered framework for cross-
layer softwarized infrastructure state assessment”. In:
IEEE Transactions on Network and Service Management
(2022), pp. 1–1. DOI: 10.1109/TNSM.2022.3161872.

[3] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-
term memory”. In: Neural computation 9.8 (1997),
pp. 1735–1780.

[4] C Phung et al. “An Open Dataset for Beyond-5G Data-
driven Network Automation Experiments.” In: Hal. hal-
03698732 (2022).

[5] HB McMahan et al. “Federated learning of deep net-
works using model averaging. CoRR abs/1602.05629”.
In: arXiv preprint arXiv:1602.05629 (2016).

[6] Brendan McMahan et al. “Communication-efficient
learning of deep networks from decentralized data”.
In: Artificial intelligence and statistics. PMLR. 2017,
pp. 1273–1282.

[7] gRPC. https://github.com/grpc.
[8] Kubernetes. URL: http://kubernetes.io.
[9] Alessio Diamanti, José Manuel Sanchez Vilchez, and

Stefano Secci. “LSTM-based radiography for anomaly
detection in softwarized infrastructures”. In: 2020 32nd
International Teletraffic Congress (ITC 32). IEEE. 2020,
pp. 28–36.


