Multi-scale Graph Neural Networks for Mammography Classification and Abnormality Detection - Archive ouverte HAL
Article Dans Une Revue Lecture Notes in Computer Science Année : 2022

Multi-scale Graph Neural Networks for Mammography Classification and Abnormality Detection

Réseaux neuronaux de graphes multi-échelle pour la classification de la mammographie et la détection d'anormalités.

Résumé

Early breast cancer diagnosis and lesion detection have been made possible through medical imaging modalities such as mammography. However, the interpretation of mammograms by a radiologist is still challenging. In this paper, we tackle the problems of whole mammogram classification and local abnormality detection, respectively, with supervised and weakly-supervised approaches. To address the multi-scale nature of the problem, we first extract superpixels at different scales. We then introduce graph connexions between superpixels (within and across scales) to better model the lesion's size and shape variability. On top of the multi-scale graph, we design a Graph Neural Network (GNN) trained in a supervised manner to predict a binary class for each input image. The GNN summarizes the information from different regions, learning features that depend not only on local textures but also on the superpixels' geometrical distribution and topological relations. Finally, we design the last layer of the GNN to be a global pooling operation to allow for a weakly-supervised training of the abnormality detection task, following the principles of Multiple Instance Learning (MIL). The predictions of the last-but-one GNN layer result in a superpixelized heatmap of the abnormality probabilities, leading to a weakly-supervised abnormality detector with low annotations requirements (i.e., trained with imagewise labels only). Experiments on one private and one publicly available datasets show that our superpixel-based multi-scale GNN improves the classification results over prior weakly supervised approaches.
Fichier principal
Vignette du fichier
13413058.pdf (12.58 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03708595 , version 1 (07-02-2023)

Identifiants

Citer

Guillaume Pelluet, Mira Rizkallah, Mickael Tardy, Oscar Acosta, Diana Mateus. Multi-scale Graph Neural Networks for Mammography Classification and Abnormality Detection. Lecture Notes in Computer Science, In press, ⟨10.1007/978-3-031-12053-4⟩. ⟨hal-03708595⟩
54 Consultations
80 Téléchargements

Altmetric

Partager

More