Almost everywhere convergence for Lebesgue differentiation processes along rectangles - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Almost everywhere convergence for Lebesgue differentiation processes along rectangles

Résumé

In this paper, we study Lebesgue differentiation processes along rectangles $R_k$ shrinking to the origin in the Euclidean plane, and the question of their almost everywhere convergence in $L^p$ spaces. In particular, classes of examples of such processes failing to converge a.e. in $L^\infty$ are provided, for which $R_k$ is known to be oriented along the slope $k^{-s}$ for $s>0$, yielding an interesting counterpart to the fact that the directional maximal operator associated to the set $\{k^{-s}:k\in\N^*\}$ fails to be bounded in $L^p$ for any $1\leq p<\infty$.
Fichier principal
Vignette du fichier
DGMR-Final-Submitted-Version-June-2022.pdf (397.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03708574 , version 1 (05-07-2022)

Identifiants

  • HAL Id : hal-03708574 , version 1

Citer

Emma D'Aniello, Anthony Gauvan, Laurent Moonens, Joseph M Rosenblatt. Almost everywhere convergence for Lebesgue differentiation processes along rectangles. 2022. ⟨hal-03708574⟩
42 Consultations
75 Téléchargements

Partager

More