Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market - Archive ouverte HAL
Article Dans Une Revue Emerging Markets Review Année : 2022

Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market

Résumé

We investigate the use of machine learning (ML) to forecast stock returns in the Brazilian market using a rich proprietary dataset. While ML portfolios can easily outperform the local market, the performance of long-short strategies using ML is hampered by the high volatility of the short portfolios. We show that an Equal Risk Contribution (ERC) approach significantly improves risk-adjusted returns. We further develop an ERC approach that combines multiple long-short strategies obtained with ML models, equalizing risk contributions across ML models, which outperforms, on a risk-adjusted basis, all individual ML long-short strategies, as well as alternative combinations of ML strategies.
Fichier principal
Vignette du fichier
S1566014122000085.pdf (1.52 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03707365 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Alexandre Rubesam. Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market. Emerging Markets Review, 2022, 51 (Part B), pp.100891. ⟨10.1016/j.ememar.2022.100891⟩. ⟨hal-03707365⟩
34 Consultations
21 Téléchargements

Altmetric

Partager

More