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Abstract

We investigate the use of machine learning (ML) to forecast stock returns in the Brazilian market using

a rich proprietary dataset. While ML portfolios can easily outperform the local market, the performance

of long-short strategies using ML is hampered by the high volatility of the short portfolios. We show

that an Equal Risk Contribution (ERC) approach significantly improves risk-adjusted returns. We further

develop an ERC approach that combines multiple long-short strategies obtained with ML models, equal-

izing risk contributions across ML models, which outperforms, on a risk-adjusted basis, all individual

ML long-short strategies, as well as alternative combinations of ML strategies.
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1. Introduction

The literature on stock return predictability and empirical asset pricing has identified hundreds of

characteristics that appear to predict stock returns (Jacobs, 2015; Harvey et al., 2016; Green et al., 2017).

Historically, most of these studies have relied on linear econometric techniques, sorts on firm character-

istics, or rankings based on ad-hoc combinations of fundamental variables. As noted by Gu et al. (2020),

these methods are not well-suited to deal with the high dimensionality of modern financial applications,

or potential nonlinearities. While machine learning (ML) models have long been used in financial ap-

plications in the operations research and machine learning literature, the recent success of ML in many

areas, including finance, has renewed interest in the topic within the finance community, including both

academics and practitioners, stimulating new research at the intersection of finance and ML.

Recent studies have demonstrated the potential of ML models in various financial applications, in-

cluding understanding the drivers of U.S. stock returns (Gu et al., 2020; Kelly et al., 2019; Kozak et al.,

2020) and bond risk premia (Bianchi et al., 2020); forecasting cryptocurrencies (Akyildirim et al., 2020);

and developing profitable statistical arbitrage strategies (Krauss et al., 2017; Fischer and Krauss, 2018;

Huck, 2019). However, fewer studies have examined the use of ML to predict stock returns in emerg-

ing markets, and the existing studies often have limitations regarding the number and type of predictors

used, as well as the ML models tested. Emerging markets tend to be extremely volatile (Bekaert and

Harvey, 1997; Bekaert et al., 1998; Hwang and Satchell, 1999a), and therefore it is not reasonable to

assume that conclusions from studies using U.S. data carry over to emerging markets. Moreover, the

abundance of ML models creates a dilemma for portfolio managers seeking to leverage these technolo-

gies: which model(s) should be used? Should forecasts or portfolios obtained using different ML models

be combined, and if so, how?

Given this context, the present paper provides three main contributions. The first one, of an empirical

nature, is to investigate the use of ML to predict stock returns and create long-short investment strategies

in an emerging market, namely the Brazilian equities market. We use a high-quality proprietary data set

of 86 technical and fundamental predictors, provided by a local asset manager specialized in quantitative

investing. This data set is comparable in scope to those used in studies with U.S. data, and includes

many variables found to be relevant for return prediction by researchers, reflecting well-known empirical

2



regularities in the cross-section of returns. Using these data, we train a variety of linear and nonlinear

ML models to predict individual stock returns. The models include linear regression with and without

regularization (via LASSO and ridge), linear models with dimension reduction via principal components

regression and partial least squares, linear models using Bayesian variable selection, and nonlinear mod-

els such as random forests, gradient boosting, and neural networks with different numbers of hidden

layers. To our knowledge, this is the first systematic exploration of ML for investment management in an

emerging market using a large number of technical and fundamental predictors. Our results suggest that

most ML models are able to produce portfolios which outperform the market, even after accounting for

exposures to common risk factors, suggesting that ML models are able to capture additional sources of

average returns embedded in the predictors.

The second contribution of this paper is related to the questions of which ML model(s) to use, and

whether and how to combine portfolios obtained with different ML models. In real life, the portfolio

manager cannot know, ex-ante, which ML model will lead to portfolios with superior ex-post perfor-

mance.1 Two immediate possibilities emerge. The first one consists in combining the return forecasts

from multiple ML models, and then constructing a portfolio based on the combined forecasts (the pre-

dictive ensemble approach). The second one entails combining portfolios obtained with different ML

models (the portfolio ensemble approach). It is unclear whether either approach can dominate the other

in practice. A predictive ensemble approach can reduce variance and reduce the risk of pre-selecting a

specific ML model. On the other hand, the approach of combining multiple portfolios may provide di-

versification benefits, because different stocks will end up being selected in the long and short portfolios

for each ML model. We investigate this empirically, by comparing portfolios obtained using these two

approaches with different types of long-short portfolios. Our results suggest that there is no statistically

significant difference between the two approaches when forecasts or portfolios are combined naively, i.e.

using an equally-weighted approach.

1In principle, one could expect that models with better out-of-sample accuracy would lead to portfolios with better perfor-
mance. However, we cannot know ex-ante which model will produce lower out-of-sample errors, and trying to select models
based on their past out-of-sample errors invites overfitting. Additionally, a lower out-of-sample error does not necessar-
ily translate into better portfolio performance, because portfolio performance depends on transaction costs, and therefore, on
portfolio turnover (see also Cenesizoglu and Timmermann, 2012). Therefore, this is an empirical question worth investigating.
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The third contribution of this paper is motivated by our initial results with simple long-short portfolios

constructed using forecasts from different ML models. Our results show that, while ML models are able

to systematically identify stocks that outperform the local market, the portfolios of stocks with the lowest

return forecasts obtained with most ML models still earn positive average returns and are extremely

volatile, making traditional long-short strategies unattractive. A natural solution to deal with this issue

is to employ an equal risk contribution (ERC) approach (e.g., Qian, 2005; Maillard et al., 2010) in the

portfolio construction step, in order to balance the risk contributions of the long and short positions.

Indeed, a simple application of the ERC approach to the portfolios in the highest and lowest quintiles of

predicted returns obtained with each ML model leads to higher returns, while also significantly reducing

volatility. This motivates the third contribution of this paper, which is of a methodological nature. We

develop a multi-strategy Equal Risk Contribution (MS-ERC) approach that combines the long and short

portfolios obtained with different ML forecasts. The objective is to construct a portfolio that invests

in all ML long and short portfolios, such that (i) the risk contributions of all individual ML long-short

strategies are equal, and (ii) the risk contribution of the overall long positions equals that of the short

positions. This approach can be thought of as a forecast-free solution to the problem of deciding how

much capital to allocate to individual long-short strategies, in which the portfolio manager assigns equal

risk budgets to all strategies, with the additional requirement of maintaining balanced risk contributions

between the long and short positions of the overall portfolio.

Our empirical results show that, in addition to attaining its objectives of equalizing risk contributions,

the MS-ERC approach outperforms, on a risk-adjusted basis, all individual ML long-short strategies,

as well as strategies based on forecasts from a simple equally-weighted ensemble of ML models (with

or without the use of the ERC approach), and a multi-strategy approach that invests equally in all ML

strategies. The MS-ERC approach also drastically reduces the volatility and maximum drawdown relative

to these other approaches, while earning a higher average return and having lower exposure to factors

such as size, value and momentum. The results remain economically and statistically significant after

accounting for transaction costs. Our results suggest that the ERC approach is an attractive alternative

to portfolio construction based on ML forecasts, which offers several advantages. First, it does not

require choosing a specific class of models, providing a natural diversification against model risk. Second,
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the formulation is intuitive, assigning equal risk budgets to different ML models. Finally, it allows the

portfolio manager to achieve balanced risk contributions across long and short positions.

The remainder of this paper is organized as follows. Section 2 is a short literature review on stock

return prediction and the recent use of ML in financial applications. Section 4.1 presents the data set

used in the study. Section 3 explains the methodology used to train the various models used to forecast

returns. Section 4 presents the empirical results. Our conclusions are presented in section 5.

2. Literature review

There have been many studies on stock return predictability in the finance and accounting literature,

using a variety of methods and different sets of predictors. Historically, these studies have focused on lin-

ear models (e.g. Haugen and Baker, 1996; Campbell and Thompson, 2007; Lewellen, 2014; Green et al.,

2017), procedures to sort stocks into portfolios based on firms’ characteristics (e.g. studies following the

approach introduced by Fama and French, 1993), or the creation of ad hoc measures combining different

fundamental variables (e.g., Piotroski, 2000; Mohanram, 2005). The focus in this literature is often the

identification of pervasive, priced risk factors, and the quantification of the corresponding risk premia.

Although there is no consensus on the exact set of priced factors, researchers have identified hundreds

of firm characteristics or “anomalies” that supposedly predict returns in a way that cannot be explained

by risk exposures to widely accepted risk factors. There are now hundreds of such anomalies, see for

example Jacobs (2015), Harvey et al. (2016), and Green et al. (2017).2

The approaches developed in the finance and accounting literature are not well-suited to deal with the

large (and increasing) number of predictors, vast amounts of data, or the potential for nonlinear dynamics

between returns and the predictors. ML methods, which have been developed precisely to deal with these

issues, have long been used in financial applications. However, given financial economists’ preference

for linear econometric methods, much of this literature is published in operational research and machine

learning journals, as highlighted by Huck (2019).3 Some examples of financial applications of ML in

2Despite the large number of predictors, recently published papers in top finance journals still rely on linear regression via
ordinary least squares, see for example Green et al. (2017), although this is quickly changing.

3See also the surveys on the use of ML for prediction of financial time series by Atsalakis and Valavanis (2009); Henrique
et al. (2019), and Sezer et al. (2020).
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this literature include, among many others: prediction of changes in exchange rates (Sermpinis et al.,

2013); return forecasting and pairs selection in pairs trading and statistical arbitrage strategies (Huck,

2009, 2010); development of trading systems using technical indicators and ML (Kaucic, 2010); and

prediction of the direction of price of cryptocurrencies (Akyildirim et al., 2020), among many others.

Recently, there has been a surge of interest in ML within the finance and economics fields.4 Recent

studies in empirical asset pricing, for example, focus on the application of ML techniques like regulariza-

tion or dimension reduction via principal component analysis (PCA) to identify the most relevant drivers

of asset returns (see for example Feng et al., 2020; Freyberger et al., 2020; Kelly et al., 2019; Kozak et al.,

2020; Lettau and Pelger, 2020). Gu et al. (2020) examine a number of ML models to forecast monthly

individual stock returns in the U.S. market using about 100 fundamental and technical features, and their

interactions with macroeconomic variables. Their results suggest that nonlinear models such as neural

networks can significantly improve predictions relative to simple linear regression approaches, and that

long-short strategies based on several ML models appear to remain profitable in recent periods. Bianchi

et al. (2020) find that ML models, particularly neural networks, provide strong evidence of bond return

predictability.

Another fertile area of research is the application of ML models and concepts to portfolio formation.

Ban et al. (2016) apply the concepts of regularization and cross-validation to portfolio optimization.

DeMiguel et al. (2019) use a LASSO technique to select characteristics in a parametric portfolio problem.

Heaton et al. (2017) explore deep learning to form portfolios, and provide an application of this approach

to create portfolios to track or outperform an index. Kolm and Ritter (2019) provide an overview of

applications of reinforcement learning in finance, including mean-reversion trading strategies, derivatives

pricing and optimal hedging. De Spiegeleer et al. (2018) apply ML to various problems in quantitative

finance including calculation of option prices and greeks (sensitivities of option prices to model inputs).

Kyriakou et al. (2019) apply simple ML models to forecast annual stock returns to use as benchmarks

for pension planning. Chen et al. (2019) develop a sparse-group LASSO methodology for portfolio

4See Varian (2014) and Mullainathan and Spiess (2017) for discussions on the role of big data and ML in the econometrics
toolbox. Hsu et al. (2016) contrast studies using ML with those using regular (linear) econometric techniques, concluding that
the best ML models are superior to the best econometric methods in terms of accuracy.

6



selection that allows investors to express preferences over equity sectors, and show its connection to

robust portfolio selection (Kim et al., 2018). Li and Rossi (2020), DeMiguel et al. (2021), and Wu et al.

(2020) use ML to select mutual funds and hedge funds.

Whereas, in asset pricing, the focus is in identifying a small set of priced risk factors that determine

asset returns at lower frequencies (monthly or annual), practitioners are usually interested in exploit-

ing ML to develop profitable trading strategies, which often operate at a higher frequency (measured

from days to fractions of a second). Some recent studies suggest ML models can be used to build prof-

itable long-short statistical arbitrage strategies, although the profitability seems to be decreasing or even

negative in recent periods, consistent with arbitrageurs increasingly exploiting the market inefficiencies

uncovered by these methods. Examples of these studies include Krauss et al. (2017), Fischer and Krauss

(2018), and Huck (2019), who apply ML models including deep learning, gradient boosted trees, and

random forests to forecast daily stock returns using different lags of individual stock returns.

The decline in the profitability of ML strategies in the U.S. market is in line with that reported by

studies such as Green et al. (2017), who document a decrease in the profitability of a long-short strategy

using linear regression forecasts since the early 2000s. The authors link this to changes in the regulatory

and trading environments, which have made it cheaper and easier to implement quantitative long-short

trading strategies exploiting a large number of signals. This is also consistent with the results of McLean

and Pontiff (2016), who document significant out-of-sample and post-publication declines in the returns

of predictors published in academic journals, suggesting arbitrageurs actively exploit new predictors as

they become known.

The situation in emerging markets is less clear, due to the much smaller number of studies in these

markets and the fact that most studies focus either on the prediction of stock market indices, or use a

limited number of features. For example, out of the more than one hundred studies surveyed by Atsalakis

and Valavanis (2009) and Hsu et al. (2016), only a handful investigate emerging markets. A similar

situation is reported by other studies surveying the use of ML for financial market prediction (Sezer

et al., 2020; Henrique et al., 2019). In an earlier work, Campbell (2000) investigated the use of neural

networks to predict emerging market stock indices using lagged returns, concluding that an active strategy

based on neural network forecasts beats a passive strategy or an active strategy based on linear regression
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forecasts. A few studies have investigated the use of ML models to predict individual stock returns in

emerging markets. Cao et al. (2005, 2011) use neural networks to forecast individual stock returns in

China, however, the number of predictors is limited to the factors in the Fama and French (1993) models.

Raposo and Cruz (2002) used fuzzy neural networks to predict individual stock returns in the Brazilian

market using fundamental indicators. However, their data is limited to five fundamental indicators, and

the analysis is focused on stocks belonging only to one sector. To our knowledge, ours is the first study to

systematically compare multiple ML models to predict individual stock returns in an emerging market,

using a large number of technical and fundamental predictors.

3. Methodology

3.1. Training, validation, and test windows

Our objective is to build regression models to forecast stock returns at time t+1, based on the value of

predictors at time t. We apply a sequential, expanding-window approach to divide the data into training,

validation, and test sets, similar to the approaches used by Gu et al. (2020) and Bianchi et al. (2020). At

each iteration, the training and validation samples are consecutive and not randomly selected, in order to

preserve the time-series structure. We start with a training window of 24 months, a validation window

of 12 months, and a test set of six months. We then expand the training window by six months, and

move the validation and testing windows six months forward. This process is repeated until the end

of the sample. The first two iterations of this sample-splitting strategy are shown in Figure 1. The

training set is used to fit the models. The validation set is used for hyperparameter tuning within a class

of models (for example, to choose the optimal penalty parameter in LASSO). We apply a grid-search

approach to select hyperparameters. Specifically, at each iteration of the expanding-window approach,

we calculate the mean squared error (MSE) of forecasts in the validation set, and choose the value of the

hyperparameter(s) with the lowest MSE. Finally, out-of-sample predictions are made for observations in

the test set.5

We use a pooled-data approach, stacking individual stock returns over all months of each training

5Table A.1 in the Appendix provides details of the ranges of hyperparameters for each method.
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Figure 1: Schematic representation of the sample splitting strategy.

window into a single vector, and their predictors into a single matrix.6 To represent this more formally,

let yi,t+1 denote the return of stock i at month t + 1, nt be the number of eligible stocks in month t, and let

τk contain the indices corresponding to the months in the k-th training window. Pooling all returns yields

a vector yTr,k of dimension
(∑

t∈τk nt

)
× 1. Likewise, assume that there are pTr,k predictors for which there

are available data for the whole training window. Let xit be the column vector of the pTr,k predictors for

stock i, at month t. Stacking all predictors produces a matrix XTr,k of size
(∑

t∈τk nt

)
× pTr,k. This approach

ensures that, even in the beginning of the sample period, thousands of observations are used to train the

ML models. The regression models for the k-th training window thus have the following specification:

yTr,k = f (XTr,k) + εTr,k, (1)

where f (·) represents a functional form and ε is an error term. We next describe specific choices for f .

3.2. Classes of models for f

We briefly review the types of models employed in our study. Most models are explained in standard

textbooks such as Friedman et al. (2001). For simplicity, we drop the subscripts and use y and X for the

6We transform all variables to the (−1, 1) interval at each month. This transformation removes outliers and mitigates the
necessity of applying robust loss functions, simplifying the hyperparameter tuning. The details are explained in section 4.1.
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response variable and matrix of predictors, respectively, assuming that y = (y1, . . . , yn)′ has n elements,

and X is an n × p matrix.

3.2.1. Linear models via OLS

The usual regression model estimated via ordinary least squares (OLS) corresponds to f (X) = Xβ.

There are no hyperparameters.

3.2.2. Ridge regression and LASSO

Both ridge regression and LASSO shrink regression coefficients by imposing a penalty on their size,

but ridge regression imposes an L2 penalty, whereas LASSO uses an L1 penalty. The coefficients are

obtained as the solution to the following problem:

β̂ridge/LAS S O = argmin
β

1
2

n∑
i=1

(yi − β0 −

p∑
j=1

xi jβ j)2 + λJ(β)

 , (2)

where the penalty term is J(β) =
∑p

j=1 β
2
j for ridge regression or J(β) =

∑p
j=1 |β j| for LASSO. The model is

estimated for a grid of values of the penalty parameter λ. The optimal parameter is the one that minimizes

the MSE in the validation set.

3.2.3. Principal Components Regression (PCR)

Principal Components Regression (PCR) is a dimension reduction technique that uses linear transfor-

mations of the data (the principal components) as the predictors. Let Z1, . . . ,ZM represent M < p linear

combinations of the original variables:

Zm =

p∑
j=1

ϕ jmX j, m = 1, . . . ,M. (3)

A linear regression of y on the transformed variables Z can be represented as a linear combination of

the original variables:
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yi = θ0 +

M∑
m=1

θmzim, i = 1, . . . , n (4)

= θ0 +

p∑
j=1

β jxi j,

where β j =
∑M

m=1 θmϕm j. For PCR, the Zm are the principal components of the data. The number of

principal components (M) in the regression model (4) is chosen based on the validation set MSE.

3.2.4. Partial Least Squares (PLS)

Partial Least Squares (PLS), like PCR, considers linear combinations of the inputs for the regression,

but it also makes use of the response variable y. PLS starts by setting ϕ j1, j = 1, . . . , p in equation (3)

as the linear regression coefficient of y onto each X j. Once Z1, the first partial least squares direction,

is obtained in this way, the first set of coefficients θ̂1 is obtained as the regression coefficient of y on Z1.

Then, X1, . . . , Xp are orthogonalized with respect to Z1. This process is continued until M ≤ p directions

are obtained. The number of partial least squares dimenions (M) in the regression model (4) is chosen

based on the validation set MSE.

3.2.5. Bayesian Variable Selection

There are many methods for Bayesian variable selection in regression models, see e.g. George and

McCulloch (1997) and O’Hara and Sillanpää (2009). We focus on the method proposed by Smith and

Kohn (1996) for the linear regression model, due to its simplicity and efficiency. Consider the linear

regression model

y = Xβ + ε, (5)

where Var(ε) = σ2I, with I the identify matrix. The variable selection method works by introducing

a vector γ = (γ1, . . . , γp)′ of latent dummy variables, where γ j = 1 if the j − th variable is included

in the model, and zero otherwise. For a given value of γ, let Xγ represent the matrix of regressors

corresponding to those elements of γ that are equal to one, and let βγ contain the corresponding elements

of β. A hierarchical prior is assumed for βγ|γ, σ2, of the form βγ|γ ∼ N(0, cσ2(X′γXγ)−1), where c is a
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hyperparameter which Smith and Kohn (1996) suggest be set between 10 and 1000. The prior for σ2

given γ is p(σ2|γ) ∝ 1/σ2.

Given these choices, it is possible to simulate the relevant conditional posterior distributions using

the Gibbs sampler. We consider three values for c: 100, 500, and 1000. For each value of c, we simulate

the distribution 10,000 times, discarding the first 5,000 simulations as a “burn-in” period. The forecast

from this method is obtained as the average of the forecasts across each simulated value of γ. We choose

the value of c that minimizes the MSE in the validation set.

3.2.6. Tree-based Ensemble Methods

We apply two methods that make use of regression trees: random forests and boosting. A single

regression tree works by partitioning the feature space into a set of distinct and non-overlapping rectan-

gular regions, by sequentially creating splits in individual features. The predicted value of a regression

tree within each of these rectangles is the average of the observations in that region. Trees are estimated

using a recursive binary splitting algorithm which determines, at each step, a combination of a feature

and a split point that minimize the forecast error at that stage. The complexity of a tree is thus a function

of the number of splits and regions in the tree. Several strategies have been developed to decide when to

stop growing a tree, or to prune a large tree in order to avoid overfitting, see for instance Breiman (1984)

and Quinlan (1993).

Random Forests. Despite their conceptual simplicity and interpretability, trees are methods with high

variance: small perturbations to the data usually lead to very different trees. Random Forests (Breiman,

2001) are an ensemble method that reduces variance and increases accuracy by combining many trees.

In the regression setting, the predicted value is the average prediction across all trees in the ensemble.

Each tree is trained on a bootstrapped sample of the training data using a randomly selected subset of

predictors, in order to produce less correlated trees. Besides the parameters controlling the growth of

individual trees, the hyperparameters of random forests are the number of bootstrap samples or trees and

the number of variables to sample. Because random forests are quite robust to overfitting regarding the

number of trees, we set the number of trees to a large value (1,000), and choose the number of variables

to sample using the validation sample.
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Boosting. The second tree-based method we use is boosting, which was originally developed for classi-

fication problems (Schapire, 1990), and relies on the idea of combining many weak classifiers (models

whose error rates are just slightly better than random guessing), trained on sequentially modified versions

of the data, to obtain a powerful ensemble with better performance. At each iteration of the algorithm,

observations in the training set are multiplied by a weight, and a model (usually a tree) is fitted to the

modified data. Observations that were misclassified in the previous iteration have their weights increased,

while the opposite is true for correctly classified observations. Many boosting algorithms have been de-

veloped, see e.g. Friedman et al. (2000) and Freund and Schapire (1997). Friedman (2001) proposed a

paradigm for function approximation based on additive expansions using steepest descent called gradient

boosting, which can be used for classification and regression problems. We use the LS Boost algorithm

proposed in that paper for regression problems with a MSE criterion. The hyperparameters of the meth-

ods are the number of splits of the tree used in each iteration, the number of iterations, and a shrinkage or

learning rate, which controls the contribution of each tree added to the ensemble. These parameters are

chosen based on the MSE in the validation sample.

3.2.7. Neural Networks

Neural networks are a class of very flexible non-linear models that were developed in the artificial

intelligence and statistics literature. We focus on feed-forward neural networks for regression problems.7

These models are typically represented using a network diagram, such as the one on Figure 2, which

represents a multi-layer neural network with six inputs (x1 to x6), two hidden layers with five and three

neurons, whose outputs are represented by z(1)
1 to z(1)

5 and z(2)
1 to z(2)

3 , respectively, and a single output

y. The output of a neuron of a given layer is obtained by applying an activation function g to a linear

combination of the values reaching that neuron from the previous layer. A commonly used activation

function for regression problems is the sigmoid function, g(x) = 1/(1 + e−x). The complexity of a neural

network is thus a function of the number of hidden layers, the number of neurons in each layer, and the

activation functions used. It can be shown that neural networks are universal approximators: they can

approximate arbitrarily well any continuous function if the number of neurons or layers is allowed to

7We provide only a brief overview of the type of neural network used in this study. More details on neural networks can
be found, e.g. in Bishop (1995) and Ripley (1996).
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increase.8
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Hidden
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Output
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Figure 2: Diagram of a feedforward neural network with two hidden layers. The figure shows a neural network with two
hidden layers, and a single output. The input layer has six inputs, labelled x1 to x6. The first and second hidden layers have
five and three neurons, respectively. The outputs from hidden layer neurons are represented by z(l)

j , where l ∈ 1, 2 represents
the hidden layer, and j identifies the neuron. They are calculated by applying an activation function to a linear combination of
the preceding connections.

Consider a neural network with L hidden layers, where the number of neurons in layer l is M(l).

Let z(l)
j be the output of neuron j of the hidden layer l. For the first hidden layer, these are simply the

original inputs, i.e. z(0)
j = x j, j = 1, . . . , p. Assuming that x1 = 1, a linear combination of the xs includes

an intercept term, and so we can write z(l)
j = g(β(l−1)′z(l−1)), where β(l−1) is a vector of weights to be

estimated, and z(l−1) = (z(l−1)
1 , . . . , z(l−1)

M(l−1). Fitting a neural network consists in finding the weights β(l−1)

in each layer by minimizing a criterion such as MSE. This is done using a gradient descent method and

what is known as the backpropagation algorithm. Because neural networks can be extremely flexible,

regularization techniques such as adding a penalty term to the optimization criterion or early stopping are

usually applied, to avoid overfitting. In this paper, we apply the latter, using the MSE in the validation

sample to decide when to stop the training.

We consider neural networks similar to those in Gu et al. (2020), i.e. networks with one (NN1) to

8This has been proved by Cybenko (1989) for single-layer networks with sigmoid activation functions. See Lu et al. (2017)
for deep networks.
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five (NN5) hidden layers, with a pyramidal structure for the number of neurons in each hidden layer. The

number of neurons in the first hidden layer is 32, and the number of neurons in each subsequent layer (if

any) is half the number of neurons in the previous layer. Thus, NN1 has 32 neurons in its single hidden

layer, NN2 has 32 neurons in the first layer and 16 in the second layer, and so on. We use a sigmoid

activation function. In addition to early stopping, we also employ an ensemble approach. For each

topology of neural network, 50 independent neural networks are trained, and their results are averaged to

form a combined forecast. This approach reduces the variance of the individual models due to the fact

that the weights are randomly initialized.

3.2.8. Ensembles of ML models

The use of ML models to forecast stock returns comes with the caveat that, in practice, it is not

possible to know in advance which ML model will perform better in the future, as different modeling

approaches may perform better under certain market conditions. One approach to attempt to improve the

accuracy of the forecasts, or at least to reduce the risk of using a single model, is to create an ensemble

that combines forecasts from multiple models. Ensembles are widely used in ML and are well justified

for statistical and computational reasons (Dietterich, 2000; Polikar, 2012).9

Recent papers that apply ML to portfolio management have shown that combining forecasts from

different types of ML model can be beneficial. For example, Huck (2009) combine return forecasts from

Elman networks with a multi-decision criteria method to rank pairs in a pairs trading strategy. Krauss

et al. (2017) aggregate probability forecasts from three ML models (deep neural networks, boosting, and

random forests) to rank stocks in a statistical arbitrage strategy. Akyildirim et al. (2020) use an equally-

weighted ensemble of four ML model to forecast cryptocurrencies.10 We adopt a similar approach and

create a simple equally-weighted ensemble that averages the predictions from the 13 ML models. We

refer to this ensemble method as ENS ML.

9We note that some of the ML models we use are themselves based on ensembles. This is the case of random forests
and boosting. We have also applied a simple averaging ensemble approach in the training of neural networks, as discussed
previously.

10See Jiang et al. (2020) and references therein for more sophisticated ensemble approaches.
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3.3. Portfolio construction and allocation

We consider the point of view of a portfolio manager seeking to apply ML to create a long-short

investment strategy. We describe two approaches to create a long-short strategy using portfolios of stocks

based on ML return forecasts. The first is a traditional long-short strategy, which buys stocks with the

highest predicted returns and shorts stocks with the lowest predicted returns. The second is an Equal

Risk Contribution (ERC) long-short strategy, which uses a variable multiplier to adjust the weights of

the short positions in order to obtain equal risk contributions from long and short positions. We then

explore approaches to create long-short strategies that combine portfolios obtained with all ML models,

and propose an approach to do this in order to obtain equal risk contributions across all ML models, and

across all long and short positions at the strategy level.

3.3.1. Baseline ML portfolios

For each ML model, we follow the common practice of grouping stocks into equally-weighted port-

folios according to their predicted returns (e.g., Haugen and Baker, 1996; Lewellen, 2014; Green et al.,

2017; Krauss et al., 2017; Gu et al., 2020).11 Due to the significantly smaller number of stocks in the

Brazilian market, compared with the U.S. market, we form portfolios by grouping stocks into quintiles

based on their predicted returns.12 The resulting portfolios, which we label P1 (lowest quintile of pre-

dicted returns) to P5 (highest quintile), form the basis of all the long-short strategies we consider.

3.3.2. Long-short strategies based on individual ML models

A traditional long-short strategy for a given ML model is obtained by going long the stocks in the top

quintile of predicted returns (i.e., going long the P5 portfolio) and short the stocks in the lower quintile

(i.e., P1). The gross excess return of this strategy is simply the difference between the return on the P5

and P1 portfolios. These long-short strategies have a net exposure of zero (i.e., they are cash neutral) and

a gross leverage ratio of 2.

11We note that, although we obtain different forecasts of individual stock returns, we do not attempt to solve a traditional
mean-variance problem using these forecasts, due to the high level of noise in these estimates and the fact that mean-variance
portfolio optimization is extremely sensitive to these inputs, i.e. Best and Grauer (1991); Michaud (1989).

12The results obtained using different percentiles to define the long and short portfolios are qualitatively similar.
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If there are large differences between the volatilities of the P1 and P5 portfolios, a cash-neutral long-

short strategy will likely have an undesirable risk-adjusted return profile. In this case, the portfolio

manager might choose to reduce exposure to the portfolio with higher risk. We explore a formal way to

achieve this through the ERC approach, also known as risk parity, in order to form a long-short strategy

with balanced risk contributions from the long and short positions. ERC has emerged as a popular risk-

based approach to build portfolios (see for example Qian, 2005; Maillard et al., 2010; Roncalli, 2016).13

Its underlying idea - creating portfolios with balanced risk contributions from different assets - is intuitive

and appealing, and ERC portfolios have been shown to historically outperform (at least for long-only

portfolios) mean-variance tangency portfolios, as well as other popular heuristic portfolio construction

methods (Chaves et al., 2011).

In the long-short context, there has been little exploration of the ERC approach.14 In this subsection,

we consider a simple setting in which there are two assets. In the next subsection, we will expand this

to the case with multiple assets. The portfolio manager would like to form a long-short strategy which

is long asset L and short asset S . Let xL > 0 be the weight allocated to asset L, and let xS = −κxL be

the weight in asset S , where κ is a positive number. The volatility of the resulting portfolio is σP =√
x2

Lσ
2
L + x2

Sσ
2
S + 2xLxSσLS , where σL and σS are the volatilities of the two assets, and σLS is their

covariance. The marginal risk contributions of assets L and S to the portfolio are defined as

MRCL =
∂σP

∂xL
=

1
σP

(xLσ
2
L + xSσLS ) (6)

MRCS =
∂σP

∂xS
=

1
σP

(xSσ
2
S + xLσLS ) (7)

The risk contributions of each asset are calculated by multiplying each weight by the corresponding

13See also Bertrand and Lapointe (2018) for an application of other risk-based strategies for portfolio construction using
socially responsible investments.

14If short sales are allowed, but the assets to be shorted are not identified, multiple ERC solutions may exist, as shown by
Bai et al. (2016). This is not the case in our applications, as the long and short portfolios are known in advance.
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marginal risk contributions:

RCL = xLMRCL =
1
σP

(x2
Lσ

2
L + xLxSσLS ) (8)

RCS = xSMRCS =
1
σP

(x2
Sσ

2
S + xLxSσLS ) (9)

The portfolio volatility can be decomposed as the sum of the risk contributions: σP = RCL+RCS . An

ERC portfolio requires that the two assets have the same risk contributions, i.e., RCL = RCS . Substituting

xS = −κxL and equating the risk contributions leads to κ = σL/σS , i.e., we should short asset S in

proportion to the ratio of the two volatilities. If asset L is more volatile than asset S , we will have κ > 1,

resulting in a portfolio that is net short. Conversely, if asset S is more volatile, κ < 1 and the portfolio

will be net long. We note that, similarly to the long-only risk parity problem with two assets (Maillard

et al., 2010), the solution does not depend on the correlation between assets 1 and 2.

We refer to this as the “simple ERC” approach, and apply it to the P1 and P5 portfolios for each ML

model. We assume that the portfolio manager will go long 100% of P5 (ie., xL = 1) and short −κ% of P1,

where κ is obtained as described above.

3.3.3. Long-short strategies using all ML models

As discussed previously, in general the portfolio manager cannot know in advance which ML model

will lead to a superior portfolio. One way to mitigate this model uncertainty is to create an ensemble

of different ML models, as explained in section 3.2.8. Another possibility is to create a strategy that

combines the portfolios obtained with different ML models. Combining asset allocation strategies is

a common approach to deal with the parameter uncertainty inherent in optimized portfolios (Kan and

Zhou, 2007; Tu and Zhou, 2011; Peter et al., 2015; Bonaccolto and Paterlini, 2019). Even naı̈ve diversifi-

cation allocation strategies, such as the equally-weighted (1/n) portfolio, are surprisingly difficult to beat

(DeMiguel et al., 2009). The two approaches are schematically represented in Figure 3 in the context of

using ML models to create portfolios.

It is unclear whether either approach can dominate the other in practice. While a predictive ensemble

approach can lead to better forecasts and reduce the risk of selecting a specific ML model, an approach

of combining multiple portfolios may be advantageous due to potential diversification gains, since each
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Figure 3: Schematic representation of two possible approaches to portfolio creation using machine learning models. In Panel
A, an ensemble of machine learning models is initially created. Assets are assigned to different portfolios based on their return
forecasts. A final portfolio is created by allocating to these portfolios. In Panel B, different portfolios are created for each
machine learning model, and a final combined portfolio is obtained by allocating to these portfolios.

ML model may select different stocks in the P5 and P1 portfolios. To investigate this issue, we compare

portfolios based on the two approaches.

Strategies based on an ensemble of ML models. First, we consider the long-short and simple ERC long-

short strategies using the ML ensemble described in subsection 3.2.8. We refer to the resulting strategies

as ENS ML-EW and ENS ML-ERC.

Strategies that combine portfolios obtained with different ML models. We consider two approaches to

combine the P5 and P1 portfolios obtained with all the ML models. The first approach is an equally-

weighted average of the quintile long-short strategies. We refer to this as the Multi-Strategy Equally-
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Weighted (MS-EW) approach. This approach is conceptually identical to the metastrategy used by Gu

et al. (2020). The second approach, which is the main methodological contribution of this paper, is a

novel application of the ERC principle to the set of long-short strategies obtained with the different ML

models. Specifically, we propose an approach to combine the individual long-short strategies such that (i)

the risk contributions of all individual long-short strategies are equal, and (ii) the overall risk contributions

of the long positions equals that of the short positions. We refer to this as the Multi-Strategy Equal Risk

Contribution (MS-ERC) approach. We can think of this approach by considering a portfolio manager

who is allocating capital to m long-short strategies. The allocations are decided by giving each long-short

strategy the same risk budget, while simultaneously requiring that the risk contributions of the long and

short positions be balanced.

In order to explain the MS-ERC approach, we introduce some notation. Let rt be a 2m × 1 vector of

returns, such that the first (last) m columns contain the returns of the long (short) portfolios obtained with

each ML model at time t, and let Σt be its covariance matrix at time t. We drop time subscripts to simplify

the notation in what follows. A long-short combination of the 2m portfolios can be represented by the

2m × 1 vector of weights x = (x+1 , . . . , x
+
m, x

−
1 , . . . , x

−
m)′. The first m elements of x are positive, while the

remaining m elements are negative. We can think of the combination as a portfolio of pair trades, where

each pair trade is long the P5 portfolio and short the corresponding P1 portfolio for a given ML model.

The return on the combination portfolio is rC = x′r, and its volatility is given by σC =
√

x′Σx.

We consider forming a long-short strategy with the following characteristics. First, the total long

allocation is 100%, i.e.
∑m

j=1 x+j = 1. Second, the allocation to the short leg (i.e. the P1 portfolio)

obtained with each ML model is a fraction κ of the long allocation: x−j = −κx
+
j . As a result, the overall

short allocation is equal to κ.15 Third, let RC+j and RC−j be the risk contributions of the long and short

15In principle, it could be possible to find a solution that does not impose this restriction. We attempted such a solution in
this study and found that, in general, it is not feasible, due to the high volatilities of the P1 portfolios.

20



legs of the ML long-short strategy j to the combined portfolio. These are calculated as

RCL
j = x+j

∂σC

∂x+j
= x+j

(Σx) j
√

x′Σx
, (10)

RCS
j = x−j

∂σC

∂x−j
= x−j

(Σx) j
√

x′Σx
. (11)

The total risk contribution of the long-short strategy associated with ML model j is RCLS
j = RC+j + RC−j ,

and the total risk contribution of all long and short positions are RC+ =
∑m

j=1 RC+j and RC− =
∑m

j=1 RC−j ,

respectively. We then impose the following conditions:

RCLS
j = RCLS

j′ , j, j′ ∈ {1, . . . ,m} (12)

RC+ = RC−. (13)

Condition (12) states that the contribution of each long-short strategy is equal for all ML long-short

strategies. Condition (13) states that the overall risk contributions of all long and short positions are

the same. In order to solve this non-standard ERC problem, we define the following quantities. Let

η = (x+1 , . . . , x
+
m,t, κ)

′ denote a vector containing the weights of the long portfolios and the short multiplier

κ. Since the weights on the short portfolios are defined as x−j = −κx
+
j , the vector η determines the full

allocation to the long and short portfolios. We collect the risk contributions in a (m + 2) × 1 vector

RC = (RCLS
1 , . . . ,RCLS

m ,RC+,RC−)′. Next, we define the risk budgets as follows. The risk budget for

each long-short strategy is bLS
j = 1/m, j = 1, . . . ,m. The risk budget for all long positions is equal to

the risk budget of all short positions: b+ = b− = 0.5. The risk budgets are collected in a (m+2)×1 vector

b = (bLS
1 , b

LS
2 , . . . , b

LS
m , b

+, b−)′. We then solve the following optimization problem:

minimize
η

f (η, b)

subject to
m∑

s=1

x+j = 1

0 ≤ x+j ≤ 1, s = 1, . . . ,m

(14)
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where

f (η, b) =
m∑

i=1

m∑
j=1

RCLS
i

bLS
i

−
RCLS

j

bLS
j

2

+

(
RC+

b+
−

RC−

b−

)2

. (15)

The function f (η, b) is minimized when conditions (12) and (13) are met. In the empirical part of

the paper, we allow the short multiplier κ to vary between 0 and 2, a range which allows for higher or

lower weights in the short portfolios, relative to the long portfolios. In general, if the volatilities of the

short portfolios are substantially higher than those of the long portfolios, we should expect κ < 1, which

is what we observe empirically.

3.3.4. Portfolio calculations

Let N be the total number of stocks in the universe, T be the total number of months, and wP
it denote

the weights of a generic portfolio P. We calculate the average monthly turnover of a portfolio P over T

months as

TurnoverP =
1
T

T∑
t=2

N∑
i=1

|wP
it − wP

i,t−1|. (16)

The turnover in each month is used to estimate the transaction costs. Higher turnovers imply higher

transaction costs and therefore negatively impact the net results of a given portfolio or strategy. To

account for transaction costs, we consider a fixed cost of 15 basis points (bps) for all trades, implying a

bid-ask spread of 0.30%.16 We also include a fixed annual borrowing cost of 4.5%, applied on the total

amount of short positions for long-short strategies.

Because the ERC portfolios have variable leverage, we calculate the average leverage ratio of a long-

short strategy as

LeverageP =
1
T

T∑
t=1

N∑
i=1

|wP
it |. (17)

Note that for traditional long-short strategies, the leverage ratio is constant and equal to 2.

16This bid-ask spread is about twice the post-decimalization average quoted bid-ask spread in the U.S. reported by Bessem-
binder (2003) for large stocks. Author’s discussions with asset managers and data providers operating in the Brazilian market
have suggest this is a conservative estimate for the universe of liquid stocks considered in this paper. We discuss results with
more conservative transaction costs in section 4.5.
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4. Empirical Results

4.1. Data

Our data set includes 572 Brazilian stocks over the period from January 2003 to December 2018. In

order to have a set of reasonably tradable stocks at each period, we impose a few minimum requirements.

First, a minimum of one year of trading data and two years of accounting data is required. Second, a

minimum liquidity requirement is enforced, based on the average daily traded volume of each stock in

the local currency, to eliminate stocks which are too small or illiquid to use in a realistic trading strategy.17

These restrictions are applied at each month, and thus result in a variable set of eligible stocks.

Features. For each stock and each month, we have data on 62 features, which include fundamental

indicators (i.e. derived from financial statement data) as well as technical indicators (i.e. constructed

from market data). We also add 24 dummy variables to represent the firms’ sectors, bringing the total

number of variables to 86. The features are listed in Table 1. Due to the proprietary nature of the data, the

names of some of the features are redacted (e.g. “Quality indicator 1”), and the exact definitions of all the

features are not disclosed. We recognize that the lack of precise definitions of some of the features may

raise questions regarding the replicability of the study. However, we believe that this is compensated by a

few factors. First, we note that, even though we do not provide precise definitions of all the features, they

are all constructed from public sources (i.e., market or financial statement data). Thus, it is reasonable to

expect that other researchers working with the same publicly available data would obtain similar results in

terms of the relative performances of the ML portfolios.18 The second factor is the exceptional quality of

this proprietary data set, which has undergone rigorous quality checks and is free of survivorship biases.

Finally, the fact that the data are actually used by the asset manager for the purposes of developing and

running quantitative investment strategies suggests that our work offers a unique insight into the potential

benefits of using ML for portfolio management in this emerging market. Despite the opaqueness in the

description of the data, generally speaking, the features are similar to the set of variables used in large-

scale stock predictability studies. Indeed, many are identical to those used by Green et al. (2017), and

17At each month, stocks whose 10-day average daily volume are inferior to R$500,000 are excluded from the set of eligible
stocks.

18We thank the Subject Editor for this comment.
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reflect characteristics that have been identified in the empirical asset pricing and accounting literature as

important drivers of returns.19 One important difference is that our data set does not include data based

on analysts’ forecasts, as these are not widely available for most companies in the Brazilian market. We

also do not use interactions with macroeconomic variables, as in Gu et al. (2020), because of the large

increase in the dimensionality of the feature space and the much smaller sample in terms of the number

of stocks and the length of the sample period.

It is important to note that some of the predictors rely on fundamental data, obtained through the com-

panies’ financial statements. These data are updated on quarterly basis, whereas market data is available

on a daily basis. Consequently, predictors that rely only on market data (those listed as technical indica-

tors in Table 1) are updated every month using the most recent data, while predictors that rely exclusively

on fundamental data (for example, EBIT growth) are updated on a quarterly frequency. Predictors that

rely on both types of data (e.g. multiples such as the price-to-book and price-to-earnings ratios) are

updated every month based on the available market data, and every quarter based on the available funda-

mental data. We note that other studies, such as Gu et al. (2020), have used a similar approach, and have

also investigated the sensitivity of their results to the frequency of the variables by using annual (instead

of monthly) returns in the regressions. Their results suggest that the same variables tend to be significant,

which provides support for using the fundamental-based predictors, despite the lower update frequency.

Data cleaning/pre-processing. In order to mitigate the effect of outliers and deal with missing data, we

apply a transformation to all features when creating the stacked matrix described in section 3.1. Each

month, for each feature, we cross-sectionally rank all eligible stocks according to the value of the feature,

and calculate a normalized value using the cross-sectional rank of that feature minus the cross-sectional

average rank of that feature, as in Asness et al. (2013). Formally, let xt,i, j denote the value of feature j

for stock i in month t. Then the value of the transformed feature is given by the expression below, where

ci,t is chosen to scale the feature such that the sum of all positive values equals one, and the sum of all

19Please refer to the Appendix in Green et al. (2017) for references.
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Table 1 Summary of features used in this study

Fundamental indicators Technical indicators

Accruals Downside volatility 1
CAPEX to sales Downside volatility 2
CAPEX to total assets Downside volatility 3
Capitalization rate Momentum indicator 1
Change in inventory to total assets Momentum indicator 2
Change in leverage Momentum indicator 3
Change in liquidity Momentum indicator 4
Coverage ratio Money flow
Didivend payout ratio Technical indicator 1
Dividend yield Technical indicator 2
Dividend yield stability Technical indicator 3
EBIT growth Technical indicator 4
EBIT to total assets Technical indicator 5
EBIT volatility Volatility indicator 1
EPS growth Volatility indicator 2
Earnings volatility Volatility indicator 3
Growth indicator 1
Growth indicator 2
Growth indicator 3
Growth indicator 4
Leverage
Liquidity
Net debt to EBITDA
Price to book
Price to earnings
Price to earnings growth
Quality indicator 1
Quality indicator 2
Quality indicator 3
Quality indicator 4
Quality indicator 5
Quality indicator 6
Quality indicator 7
Quality indicator 8
ROE
ROIC
Sales growth
Sales volatility
Sector
EBIT = Earnings Before Interest and Taxes; EBITDA = Earnings
Before Taxes, Interest, Taxes, Depreciation and Amortization;
ROE = Return On Equity; ROIC = Return On Invested Capital;
EPS = Earnings Per Share; CAPEX = Capital Expenditure.
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negative values equals minus 1.

x∗t,i, j = ci,t

rank(xt,i, j) −
∑

i

rank(xt,i, j)/nt

 . (18)

This normalization mitigates the effect of outliers and also scales all features to have zero mean. We

replace missing observations with the mean value of zero.20

Table 2 reports summary statistics for the stocks which fulfill the eligibility criteria. The average

number of eligible stocks per month varies over time from 54 in 2003 to 189 in 2018. Over the period

from January 2003 to December 2018, an equally-weighted portfolio of the eligible stocks in the universe

earned on average 1.63% per month, with a standard deviation of 5.56%. For comparison purposes, we

also report these statistics for the IBOVESPA index, a widely used gauge of the Brazilian equity market,

as well as the Brazilian interbank certificate of deposite rate, or CDI, which is the risk-free benchmark

rate in Brazil.21 The IBOVESPA earned on average 1.29% per month, with a standard deviation of 6.09%.

The average cross-sectional volatility of the eligible stocks is 11.71%, suggesting that individual stocks

in the Brazilian market are much more volatile than those in developed markets. For example, Hou et al.

(2020) report a cross-sectional standard deviation of 10.52% for the entire U.S. market, excluding micro-

cap stocks, over the period from January 1967 to December 2016. This feature of emerging markets has

been reported in several studies (Bekaert and Harvey, 1997; Bekaert et al., 1998; Hwang and Satchell,

1999b).

It is worth noting that, although the average returns of the equally weighted and IBOVESPA bench-

marks seem high compared to developed markets, the standard deviations are also high. In addition, the

Brazilian risk-free rate has been historically high, particularly during the earlier part of the sample, peak-

ing at over 26% per year in early 2003. The average monthly CDI rate over the 2003-2018 period was

0.99% per month, which is over 12.54% on an annual basis). As a result, the annualized Sharpe ratios

of the equally weighted and IBOVESPA benchmarks over this period are relatively low: only 0.31 and

0.20, respectively, over the 2003-2018 period, and even lower in the 2006-2018 period.

20We have also trained models using winsorized versions of the features; the results were very similar.
21The IBOVESPA is a a total return, value-weighted index that tracks the performance of the more actively traded stocks in

the Brazilian equity market.
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Table 2 Average monthly returns, average monthly standard deviations, and cross-sectional standard deviations of eligible
stocks in the investment universe. The table reports statistics for the universe of eligible stocks used in the paper, as well as the
IBOVESPA index and the risk-free rate of return (the Brazilian interbank certificate of deposite rate, or CDI). All numbers are
on a monthly basis, except Sharpe ratios, which are annualized. The table reports average returns (Ave), standard deviations
(Std), and Sharpe ratios (SR) for each period.

Eligible stocks used in this study

Number of
firms

Equal weighted returns Cross-sectional IBOVESPA Risk-free

Year Ave Std Std Ave Std Ave

2003 54 6.88% 6.03% 12.85% 6.03% 6.65% 1.79%
2004 67 3.26% 4.79% 10.16% 1.51% 5.37% 1.25%
2005 75 1.67% 6.16% 11.14% 2.31% 7.46% 1.46%
2006 87 3.73% 5.36% 10.31% 2.57% 6.19% 1.22%
2007 124 2.93% 4.78% 11.29% 3.15% 4.33% 0.95%
2008 163 -4.30% 9.47% 12.49% -3.85% 9.89% 0.95%
2009 178 7.30% 7.75% 12.74% 5.29% 5.79% 0.82%
2010 198 1.60% 3.86% 10.14% 0.22% 5.46% 0.76%
2011 198 -1.27% 3.68% 10.45% -1.54% 4.89% 0.92%
2012 192 1.53% 4.08% 10.51% 0.75% 5.84% 0.71%
2013 186 -0.92% 3.25% 10.54% -1.30% 4.42% 0.63%
2014 187 -1.46% 4.38% 10.75% -0.05% 6.47% 0.84%
2015 179 -1.69% 4.88% 13.84% -1.03% 5.90% 1.02%
2016 172 2.71% 8.32% 15.99% 3.08% 8.20% 1.10%
2017 179 3.22% 5.09% 11.72% 2.08% 4.11% 0.84%
2018 189 0.84% 7.12% 12.45% 1.36% 6.48% 0.52%

Ave (2003-2018) 152 1.63% 5.56% 11.71% 1.29% 6.09% 0.99%
Ave (2006-2018) 172 1.09% 5.54% 11.79% 0.83% 6.00% 0.87%

SR (2003-2018) 0.31 0.20
SR (2006-2018) 0.07 -0.03
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4.2. Performance of baseline ML portfolios

Table 3 reports return statistics for the P1, P5, and P5 − P1 baseline ML portfolios.22 Since the first

training window comprises the first two years, and we use a one-year validation window, the results

comprise the period from January 2006 to December 2018. All numbers are on a monthly basis, except

for Sharpe ratios, which are annualized. For each method, we report average gross and net (i.e. after

costs) returns, the standard deviation of returns, gross and net Sharpe ratios, maximum drawdowns, and

the average portfolio turnover.23 The table also reports the out-of-sample (OOS) R2 for each ML model,

calculated as in Gu et al. (2020). We report the number of stocks in each quintile portfolio at each month

in Figure A.1 in the Appendix. We test the hypothesis of equality between the Sharpe ratios of each

portfolio and that of the IBOVESPA index using the Ledoit and Wolf (2008) test. The results are shown

in Table A.3 and in subsequent tables using the usual one, two and three stars convention for p-values

below 0.10, 0.05, and 0.01, respectively.

As shown on Table A.3 in the Appendix, returns increase monotonically across quintiles for all ML

models, indicating that, at the quintile portfolio level, the ML return forecasts align with future realized

returns. The portfolios formed on the highest quintile of return forecasts (P5) deliver gross average

monthly returns that range from 1.61% (for the NN1 model) to 2.13% (for the NN4 model). On a

net basis, i.e. after transaction costs, these returns range from 1.47% (NN1) to 2.02% (NN5). The

models that deliver the highest P5 returns are the neural networks with four and three hidden layers

(gross monthly average returns of 2.13% and 1.94%, respectively).24 As shown on the last row of Table

2, over the same period an equally-weighted portfolio of all the eligible stocks achieved a monthly average

return of 1.09%, while the IBOVESPA index earned 0.83% per month. Therefore, at first glance, all ML

models seem to be successful at producing portfolios that outperform the market, out of sample and net

22Statistics for all the quintile ML portfolios are reported in Table A.3 in the Appendix.
23To calculate Sharpe ratios, we use as the risk-free rate the Brazilian interbank certificate of deposit rate, or CDI, which

represents the average rate of all interbank overnight transactions in Brazil. When calculating Sharpe ratios, we assume the
investor deploys any excess cash in an investment that yields the risk-free rate.

24We note that there is only a weak relationship between the statistical accuracy of the models, measure by the OOS R2,
and the performance of portfolios. For example, while LASSO and Ridge both have much higher OOS R2 compared to OLS,
the net SR of the P5 − P1 portfolios are similar. As shown for example by Cenesizoglu and Timmermann (2012), statistical
performance may be a misleading indicator of economic performance.
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Table 3 Performance of Baseline Machine Learning Portfolios. The table reports out-of-sample performance metrics for
equally-weighted quintile portfolios formed on predicted returns using machine learning methods. P1 (P5) is the portfolio
formed on the lowest (highest) quintile of predicted returns. P5 − P1 is a hedge portfolio long the stocks in P5 and short the
stocks in P1. The table reports average monthly return before (Ave) and after costs (Ave (net)), the monthly standard deviation
(Std), the annualized Sharpe Ratio before (SR) and after costs (SR (net)), the maximum drawdown (Max. DD), the monthly
turnover. The table also reports, for each machine learning method, the out-of-sample (OOS) R2. One, two and three asterisks
denote a statistically significant difference between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the
same period at the 10%, 5% and 1% significance level, respectively, using the Ledoit and Wolf (2008) test.

OLS (OOS R2 = −0.0338) LASSO (OOS R2 = 0.0079) Ridge (OOS R2 = 0.0079) PLS (OOS R2 = 0.0017)

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.30 1.91 1.61 0.22 1.94 1.72 0.07 1.92 1.86 0.03 1.92 1.90
Ave (net) 0.17 1.77 0.97 0.13 1.84 1.16 -0.02 1.83 1.32 -0.05 1.84 1.38
Std 8.65 6.33 5.17 9.32 5.99 6.23 8.85 6.07 5.80 9.77 5.13 7.18
SR -0.22 0.57∗∗ 1.08∗ -0.24 0.63∗∗ 0.96 -0.31 0.61∗∗ 1.11 -0.30 0.72∗∗ 0.91
SR (net) -0.28 0.50∗∗ 0.65 -0.27 0.57∗ 0.65 -0.34 0.55∗ 0.79 -0.32 0.66∗∗ 0.66
Max.DD 82.87 50.53 53.83 85.09 51.97 65.67 84.94 52.13 54.65 88.08 42.31 62.91
Turnover 86.24 91.57 177.81 59.37 66.35 125.72 57.04 63.30 120.35 48.54 53.78 102.32

PCR (OOS R2 = 0.0049) Bayes (OOS R2 = −0.0010) Boost (OOS R2 = 0.0075) RF (OOS R2 = −0.0030)

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.26 1.69 1.43 0.16 1.84 1.68 0.25 1.85 1.60 0.15 1.86 1.71
Ave (net) 0.19 1.61 0.90 0.04 1.71 1.06 0.16 1.73 1.02 0.02 1.72 1.07
Std 9.75 4.70 7.21 8.96 5.87 5.92 9.30 5.51 6.58 9.29 5.84 6.10
SR -0.21 0.61∗∗ 0.69 -0.27 0.58∗∗ 0.98 -0.23 0.62∗∗ 0.84 -0.27 0.59∗∗ 0.97
SR (net) -0.24 0.55∗∗ 0.43 -0.32 0.50∗ 0.62 -0.26 0.55∗∗ 0.54 -0.31 0.51∗∗ 0.61
Max.DD 88.51 39.76 66.59 84.68 51.14 62.80 90.64 40.64 67.78 88.85 46.65 58.29
Turnover 51.50 54.34 105.84 79.14 86.91 166.06 62.38 74.78 137.16 85.21 94.92 180.13

NN1 (OOS R2 = −0.0802) NN2 (OOS R2 = −0.0180) NN3 (OOS R2 = 0.0033) NN4 (OOS R2 = 0.0092)

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.28 1.61 1.33 0.17 1.67 1.49 -0.01 1.94 1.95 0.07 2.13 2.06
Ave (net) 0.15 1.47 0.69 0.05 1.52 0.86 -0.12 1.81 1.33 -0.03 2.02 1.48
Std 7.92 6.42 4.97 8.45 6.35 5.29 8.59 6.08 5.51 9.21 5.79 5.96
SR -0.25 0.40∗ 0.93∗ -0.28 0.44∗∗ 0.98 -0.35 0.61∗∗ 1.22∗ -0.30 0.76∗∗ 1.20∗

SR (net) -0.31 0.33 0.48 -0.33 0.36∗ 0.56 -0.40 0.54∗∗ 0.84 -0.34 0.69∗∗ 0.86
Max.DD 83.45 55.14 39.77 85.13 50.66 52.43 87.73 49.04 55.28 87.78 48.07 55.61
Turnover 89.28 93.85 183.13 84.41 94.14 178.55 77.01 86.12 163.13 66.94 76.47 143.41

NN5 (OOS R2 = 0.0093) ENS ML (OOS R2 = 0.0096)

P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.17 1.89 1.72 0.02 2.02 2.00
Ave (net) 0.07 1.78 1.15 -0.08 1.90 1.41
Std 9.50 5.46 6.38 9.21 5.76 6.11
SR -0.25 0.65∗∗ 0.93 -0.32 0.69∗∗ 1.13∗

SR (net) -0.29 0.58∗∗ 0.63 -0.36 0.62∗∗ 0.80
Max.DD 87.82 45.94 62.42 89.79 47.54 59.00
Turnover 60.64 70.70 131.34 69.39 79.29 148.68
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of transaction costs.25 We also note that most P5 portfolios produce significantly higher Sharpe ratios

relative to the IBOVESPA, on both a gross and net basis. In order to build a long-short strategy, it would

be desirable to be able to predict which stocks will have negative returns in the future. However, with

the exception of the NN3 model, all P1 portfolios earn low, but positive returns, and have significantly

higher volatility than the corresponding P5 portfolios (the average volatility of the P1 portfolios is 57%

higher than that of P5 portfolios). This limits the potential profitability of traditional long-short strategies,

especially on a risk-adjusted basis.

The average turnovers are generally high, but vary significantly across ML models. For example, for

the P5 − P1 portfolios, the average turnover varies from about 102% for the PLS method to 183% for

the NN1 method. These numbers are higher than those reported by Gu et al. (2020) for the U.S. market.

Notwithstanding the high turnovers, most of the transaction costs of the P5 − P1 strategies come from

the borrowing costs of the short positions in the P1 portfolio. While each 10% of turnover adds 1.5 basis

points of transaction cost per month, the borrowing cost is fixed and amounts to 37.5 basis points each

month. So, in addition to being unprofitable on average, the short positions are very costly.

All portfolios have very high maximum drawdowns, typically higher than 50% and much higher for

the P1 portfolios. The maximum drawdown of the P5 − P1 strategies range from approximately 40%

for the NN1 model to approximately 68% for the boosting model. In terms of risk-adjusted returns, the

best performers are the neural network models with four and three hidden layers. The net Sharpe ratio

(SR) of the P5 − P1 strategies using these models are 0.86 and 0.84, respectively. The next best method

is ridge regression, with a net SR of 0.79. The other nonlinear methods tested in this study, boosting

and random forests, do not seem to be very competitive, slightly underperforming most linear methods

after transaction costs are taken into account. Most of the P5 − P1 portfolios do not produce significantly

higher Sharpe ratios compared to the IBOVESPA, and none do when the net Sharpe ratio is considered.

Table 3 also reports results for the equally-weighted ensemble that averages the forecasts from all ML

models (ENS ML). The ensemble achieves results which are close to those obtained with the best meth-

25In Table A.2 in the Appendix, we report results for equally-weighted portfolios formed using the individual predictors.
The highest Sharpe ratio obtained for individual long-short portfolios is close to 0.64, or about half that of the more competitive
ML portfolios that use all the predictors, which confirms that ML models are able to improve by combining the individual
signals.
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ods. The P5 − P1 long-short strategy using the ensemble achieves a gross (net) average return of 2.00%

(1.41%), which is inferior only to the neural network with four layers. Its net SR of 0.80 is comparable

to those of the long-short strategies using the NN4 and NN3 models (0.86 and 0.84, respectively), but

it is also not statistically different from that of the IBOVESPA index. Therefore, at a first glance, the

predictive ensemble approach appears to be beneficial.

A relevant question is which variables are useful to predict stock returns. In order to investigate this,

we calculate, for each ML model and each feature, a measure of variable importance, calculated as the

reduction in the predictive (out-of-sample) R2 from setting all values of that feature to zero, while holding

the remaining model estimates fixed, as in Gu et al. (2020) and Kelly et al. (2019). We aggregate these

measures across the whole test period. Figure 4 summarizes this variable importance measure across

all models.26 The features are shown in order from top (most influential) to bottom (least influential)

according to their overall contribution, measured by the sum of the ranks of the corresponding variable

importance measures across all models. Columns show individual ML models, with color gradients

within each column indicating the most influential (dark blue) to the least influential (white) features. Of

the top ten most relevant predictors across all models, four are fundamental (Quality Indicator 1, dividend

yield, Growth indicator 1 and Growth indicator 2) and six are technical (related to momentum (Jegadeesh

and Titman, 1993) and volatility (Ang et al., 2006)). In contrast, Gu et al. (2020) show only one funda-

mental variable in the top ten predictors (ratio of sales to market capitalization), with the most important

variables being of a technical nature. Although direct comparisons are challenging due to differences

in sample periods and the set of variables used, these results suggest that fundamental indicators play

a more prominent role in the prediction of stock returns in the Brazilian equity market, in comparison

with a much more mature market, the United States. This is sensible; the higher volatility observed in

emerging markets would suggest that investors need to pay closer attention to fundamentals. Interest-

ingly, the sector dummy variables seem to be extremely relevant for neural networks, in comparison with

other ML models. This suggests that neural networks are better able to incorporate interactions of the

sector dummies with other variables. The figure also shows that neural networks tend to make use of

26Figure A.2 in the Appendix provides the normalized variable importance measures for the 15 most relevant variables
within each model.
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more variables, similarly to the result found by Gu et al. (2020) for the U.S. market.

Our results bear some similarities with those of Gu et al. (2020), which is perhaps the closest paper in

terms of the ML models explored and the type and frequency of the data used. Like them, we also find that

neural networks are the best performers among ML models, with performance peaking at three to four

hidden layers. However, in our application, other nonlinear ML models, such as boosting and random

forests, are not very competitive. It is possible that other choices for hyperparameter optimization for

these models might have produced better results. However, the fact that only neural networks were able

to uncover patterns that produce long-short strategies that beat linear models suggests that non-linearities

do play a strong role in this market. In comparison with other studies that use daily stock return data, our

results show important differences. For example, Krauss et al. (2017) reports highest Sharpe ratios with

random forests, followed by gradient boosting and deep networks. Huck (2019) also finds that random

forests outperform other methods such as deep belief networks and the elastic net. Comparison with these

studies is challenging, however, due to differences in data and methodology. Particularly, these studies

use a classification approach to predict the direction of daily price changes, while we use a regression

approach to predict monthly returns.

Overall, our results show that ML is not a panacea for portfolio management, and highlight the

importance of the portfolio construction and risk management processes, as well as the context of the

market in which it is applied. Additionally, since many ML models produce portfolios with high turnover,

taking into account transaction costs when comparing ML portfolios is essential.

4.3. Performance of long-short strategies using individual ML models

The results in Table 3 show that traditional long-short strategies based on ML forecasts in the Brazil-

ian equity market have some drawbacks. First, the short positions do not produce additional returns,

since the P1 portfolios typically earn positive returns. Second, the high volatility of the P1 portfolios

increases the volatility of the long-short strategies. Third, the long-short strategies have high maximum

drawdowns. In this subsection, we explore the use of the simple ERC approach to combine portfolios

based on the P5 and P1 portfolios for each ML model. At each month, for each ML model, we first

identify the stocks in the corresponding P1 and P5 portfolios. We use an exponentially weighted moving

average estimator with a decay factor of λ = 0.96 to estimate the covariance matrix of these stocks,
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using one year of daily returns.27 We then estimate the volatilities of the P1 and P5 portfolios, which are

required to obtain κ, the short weight multiplier, as described in Section 3.3.2.

Table 4 reports the results. Panel A shows results for the traditional long-short strategies, i.e. the

P5 − P1 portfolios in Table 3. Panel B reports results for the simple ERC long-short strategies for each

ML model. For most methods, the average returns are higher for ERC long-short strategies compared

with traditional long-short strategies, since the short (P1) portfolios are underweighted to balance the risk

contributions. The volatilities and maximum drawdowns of the ERC long-short strategies are greatly

reduced, compared to traditional long-short strategies. The average reduction in volatility is 33%, while

maximum drawdowns are reduced by over 47% on average. The maximum drawdowns of the best

ERC long-short strategies are less than 30%. The ERC long-short strategies have variable leverage,

depending on the evolution of the volatilities of the baseline portfolios. The average leverage ratios of

these strategies varies from 1.61 for the PCR model to 1.86 for the RF model. On average, the simple

ERC strategy reduces short exposures by 25% across all ML models.

In terms of net SR, all ERC portfolios outperform the traditional long-short strategies. Similarly to

the traditional long-short strategies, the highest net SR using individual models are achieved by the NN3

and NN4 models (1.15 and 1.11, respectively), while the net SR of the ENS ML ensemble is 1.14. All

of these are significantly higher compared to the IBOVESPA at the 10% significance level (and at the

5% level for NN3). Figure 5 plots the average (net) monthly return and monthly standard deviation of

the different long-short strategies for each ML model. It is clear from the figure that, for almost all ML

models, the ERC approach reduces risk, while simultaneously increasing returns.

An important question is whether the returns of ML strategies can be explained by exposure to well-

known risk factors. To investigate this issue, we regress the excess returns of the different long-short and

simple ERC long-short strategies on the Fama and French (1996) three factors and a momentum factor.28

Table 5 reports the estimates of intercepts and factor loadings, as well as the associated p-values, calcu-

27Our results are not dependent on this choice. Results with other values of λ, rolling-window sample covariance estimates,
or the shrinkage estimator of Ledoit and Wolf (2004) are qualitatively similar.

28The factors are constructed for the Brazilian equity universe following the methodology in Fama and French (2017). The
average monthly returns of the S MB, HML, and WML factors during the sample period are −0.03%, 0.47%, and 1.02%,
respectively (not tabulated).
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Figure 4: Summary of variable importance across different ML models. EBIT = Earnings Before Interest and Taxes; EBITDA
= Earnings Before Taxes, Interest, Taxes, Depreciation and Amortization; ROE = Return On Equity; ROIC = Return On
Invested Capital; EPS = Earnings Per Share; CAPEX = Capital Expenditure.
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Table 4 Risk and return statistics of long-short strategies obtained with different machine learning methods. The table reports out-of-sample performance
metrics for different long-short strategies formed on predicted returns using machine learning methods. Panel A shows results for traditional long-short
strategies which are long (short) the highest (lowest) decile of predicted returns with each machine learning method. Panel B shows results for Equal Risk
Contribution (ERC) long-short strategies, which equalize the risk contributions of the long and short legs. The table reports the average monthly return
before (Ave) and after costs (Ave (net)), the monthly standard deviation (Std), the annualized Sharpe Ratio before (SR) and after costs (SR (net)), the
maximum drawdown (Max. DD), the average monthly turnover, and the average leverage. One, two and three asterisks denote a statistically significant
difference between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period at the 10%, 5% and 1% significance level,
respectively, using the Ledoit and Wolf (2008) test.

Panel A: Traditional long-short strategies

OLS LASSO Ridge PLS PCR Bayes Boost RF NN1 NN2 NN3 NN4 NN5 ENS ML

Ave 1.61 1.72 1.86 1.90 1.43 1.68 1.60 1.71 1.33 1.49 1.95 2.06 1.72 2.00
Ave (net) 0.97 1.16 1.32 1.38 0.90 1.06 1.02 1.07 0.69 0.86 1.33 1.48 1.15 1.41
Std 5.17 6.23 5.80 7.18 7.21 5.92 6.58 6.10 4.97 5.29 5.51 5.96 6.38 6.11
SR 1.08∗ 0.96 1.11 0.91 0.69 0.98 0.84 0.97 0.93∗ 0.98 1.22∗ 1.20∗ 0.93 1.13∗

SR (net) 0.65 0.65 0.79 0.66 0.43 0.62 0.54 0.61 0.48 0.56 0.84 0.86 0.63 0.80
Max.DD 53.83 65.67 54.65 62.91 66.59 62.80 67.78 58.29 39.77 52.43 55.28 55.61 62.42 59.00
Ave. turnover 177.81 125.72 120.35 102.32 105.84 166.06 137.16 180.13 183.13 178.55 163.13 143.41 131.34 148.68
Ave. leverage 2.00 2.00 1.96 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Panel B: Equal risk contribution long-short strategies

OLS LASSO Ridge PLS PCR Bayes Boost RF NN1 NN2 NN3 NN4 NN5 ENS ML

Ave 1.76 1.72 1.76 1.72 1.51 1.87 1.56 1.74 1.41 1.50 1.98 1.98 1.71 1.95
Ave (net) 1.19 1.25 1.31 1.33 1.14 1.31 1.12 1.23 0.83 0.94 1.45 1.51 1.26 1.48
Std 3.95 4.18 4.11 4.35 4.02 4.20 3.84 3.96 3.67 3.88 3.86 4.05 4.08 3.81
SR 1.42∗∗ 1.29∗ 1.32∗∗ 1.16∗ 1.01 1.43∗∗ 1.17∗ 1.32∗ 1.21∗∗ 1.21∗∗ 1.62∗∗ 1.52∗∗ 1.27∗∗ 1.56∗∗

SR (net) 0.92∗ 0.90 0.94 0.85 0.70 0.98 0.78 0.87 0.66 0.70 1.15∗∗ 1.11∗ 0.88 1.14∗

Max.DD 28.38 36.29 27.85 30.35 39.00 34.82 35.46 40.08 16.76 30.70 26.15 23.79 29.70 30.10
Ave. turnover 172.59 119.84 114.54 93.87 92.81 161.66 125.63 164.15 178.79 172.26 155.44 133.29 121.75 136.83
Ave. leverage 1.83 1.79 1.76 1.68 1.61 1.84 1.68 1.72 1.86 1.82 1.80 1.75 1.73 1.71
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lated using heteroscedasticity and autocorrelation-consistent standard errors. The first important result

from this table is that the estimates of alphas are all positive and statistically significant. The best ML

long-short strategy, NN3, has an alpha of 1.79% per month, with a p-value of less than 0.01. The results

on Panel A show that almost none of the ML long-short strategies have a significant market exposure,

as expected. On the other hand, all ML long-short strategies have negative - and typically high signifi-

cant - loadings on the S MB and HML factors, indicating that the strategies tend to tilt towards large-cap

stocks which are classified as growth stocks in terms of book-to-market ratios. Finally, the positive and

typically significant loadings on the momentum factor reveal that most ML strategies are tilted towards

stocks which have been on positive trends. This is not surprising, given the well-documented existence of

momentum in general, and in particular the importance of momentum features in return prediction seem

in Figure 4. The results for the simple ERC ML strategies on Panel B are largely similar, with usually

higher market beta, which is expected as these strategies are on average net long, and lower loadings on

the other factors.

These results show that the ML strategies are delivering returns that exceed what would be expected

given their exposures to the market, size, value and momentum factors. Indeed, since most strategies

have a negative loading on the value factor, which has a positive average monthly return of 0.47%, this

tilt towards growth stocks represents a drag on the risk-adjusted performance. On the other hand, the

consistently positive loading on the momentum factor, which has an even higher return of 1.02%, does

not explain the returns of the ML strategies, suggesting that they are successfully capturing other sources

of expected return.

4.4. Performance of long-short strategies using multiple ML models

In this section, we explore long-short strategies that combine multiple ML models, either by using

the equally-weighted average ensemble, or by combining the long and short portfolios obtained with

different models. We compare the four long-short strategies discussed in section 3.3.3. The first one

is a traditional long-short strategy using the predictive ensemble model that averages forecasts from all

ML models. We label the corresponding long-short portfolio as ENS ML-EW. The second is the simple

ERC strategy, applied to the P5 and P1 portfolios obtained with this ensemble, which we denoted by
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Figure 5: Monthly standard deviation and net average return of different long-short strategies
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Table 5 Factor loadings and risk-adjusted returns of long-short strategies obtained with different machine learning methods. The excess returns of different
strategies formed on predicted returns using machine learning methods are regressed on the Fama and French (1996) three factors plus a momentum factor:

ri = αi + βirmt + β
S MB
i S MBt + β

HML
i HMLt + β

WML
i WMLt + ϵt,

where rmt is the excess return on a value-weighted market portfolio, S MBt is the small-minus-big or size factor, HMLt is the high-minus-low book-to-
market factor, and WMLt is the winner-minus-loser or momentum factor. Standard errors are adjusted for heteroscedasticity and autocorrelation. Panel
A shows results for traditional long-short strategies which are long (short) the highest (lowest) decile of predicted returns with each machine learning
method. Panel B shows results for Equal Risk Contribution (ERC) long-short strategies, which equalize the risk contributions of the long and short legs.

Panel A: Traditional long-short strategies

OLS LASSO Ridge PLS PCR Bayes Boost RF NN1 NN2 NN3 NN4 NN5 Ens1

Intercept (%) 1.4∗∗∗ 1.41∗∗∗ 1.35∗∗∗ 1.36∗∗∗ 0.95∗∗ 1.35∗∗∗ 1.24∗∗∗ 1.4∗∗∗ 1.53∗∗∗ 1.5∗∗∗ 1.79∗∗∗ 1.77∗∗∗ 1.37∗∗∗ 1.73∗∗∗

p-value < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
rmt 0.01 -0.03 0 -0.11∗ -0.22∗∗∗ 0.01 -0.06 -0.07 -0.08 -0.05 0.01 -0.04 -0.11∗ -0.05
p-value 0.46 0.37 0.48 0.06 < 0.01 0.47 0.19 0.20 0.21 0.26 0.46 0.32 0.09 0.27
S MBt -0.23∗∗ -0.38∗∗∗ -0.2∗∗ -0.5∗∗∗ -0.55∗∗∗ -0.31∗∗∗ -0.44∗∗∗ -0.39∗∗∗ -0.05 -0.15 -0.29∗∗∗ -0.39∗∗∗ -0.42∗∗∗ -0.37∗∗∗

p-value 0.02 < 0.01 0.05 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.32 0.11 < 0.01 < 0.01 < 0.01 < 0.01
HMLt -0.38∗∗∗ -0.51∗∗∗ -0.24∗ -0.46∗∗∗ -0.39∗∗∗ -0.41∗∗∗ -0.55∗∗∗ -0.44∗∗∗ -0.54∗∗∗ -0.5∗∗∗ -0.45∗∗∗ -0.41∗∗∗ -0.42∗∗∗ -0.51∗∗∗

p-value < 0.01 < 0.01 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
WMLt 0.22∗∗ 0.31∗∗∗ 0.46∗∗∗ 0.47∗∗∗ 0.41∗∗∗ 0.32∗∗∗ 0.35∗∗∗ 0.3∗∗∗ -0.04 0.1 0.17∗∗ 0.27∗∗∗ 0.32∗∗∗ 0.28∗∗∗

p-value 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.39 0.23 0.04 < 0.01 < 0.01 < 0.01
Adj. R2 0.32 0.49 0.38 0.61 0.62 0.39 0.57 0.47 0.24 0.28 0.34 0.44 0.51 0.48

Panel B: Equal risk contribution long-short strategies

OLS LASSO Ridge PLS PCR Bayes Boost RF NN1 NN2 NN3 NN4 NN5 Ens1

Intercept (%) 1.47∗∗∗ 1.31∗∗∗ 1.19∗∗∗ 1.06∗∗∗ 0.93∗∗∗ 1.48∗∗∗ 1.04∗∗∗ 1.35∗∗∗ 1.48∗∗∗ 1.38∗∗∗ 1.67∗∗∗ 1.53∗∗∗ 1.23∗∗∗ 1.53∗∗∗

p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
rmt 0.09∗ 0.1∗ 0.11∗ 0.11∗∗ 0.07 0.04 0.12∗∗ 0.13∗∗ -0.01 0.05 0.09 0.1∗ 0.03 0.09∗

p-value 0.08 0.06 0.05 0.03 0.13 0.29 0.01 0.01 0.47 0.27 0.11 0.09 0.34 0.08
S MBt -0.16∗∗ -0.23∗∗∗ -0.11 -0.21∗∗ -0.24∗∗∗ -0.23∗∗∗ -0.17∗∗ -0.17∗∗ -0.03 -0.09 -0.2∗∗∗ -0.21∗∗ -0.23∗∗∗ -0.2∗∗∗

p-value 0.03 0.01 0.13 0.01 < 0.01 0.01 0.02 0.04 0.34 0.18 0.01 0.01 < 0.01 0.01
HMLt -0.17∗∗ -0.19∗∗ 0 -0.15 -0.21∗∗ -0.07 -0.17∗∗ -0.23∗∗∗ -0.31∗∗∗ -0.26∗∗∗ -0.14∗ -0.11 -0.09 -0.16∗∗

p-value 0.05 0.03 0.49 0.12 0.02 0.27 0.02 0.01 < 0.01 0.01 0.06 0.10 0.15 0.05
WMLt 0.12∗∗ 0.19∗∗∗ 0.3∗∗∗ 0.31∗∗∗ 0.2∗∗∗ 0.18∗∗ 0.22∗∗∗ 0.14∗∗ -0.1 0.01 0.08 0.17∗∗ 0.19∗∗∗ 0.14∗∗

p-value 0.04 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 0.02 0.16 0.45 0.13 0.01 < 0.01 0.02
Adj. R2 0.12 0.24 0.17 0.30 0.29 0.16 0.24 0.17 0.12 0.11 0.13 0.17 0.24 0.19
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ENS ML-ERC.29 The third strategy is the equally-weighted average of the individual long-short strategies

obtained with each model (MS-EW). Finally, the fourth strategy results from applying the MS-ERC

approach explained in section 3.3.3 to the set of individual long and short portfolios obtained with each

ML model. To solve the ERC problem (14), we require an estimate of the covariance matrix of the P1

and P5 portfolios for each of the ML models. At each month, we do this using an exponentially-weighted

moving average estimator with a decay factor of λ = 0.96, applied to the daily returns of the P1 and P5

portfolios for all models.30

Panel A of Table 6 shows the results for the two strategies using the equally-weighted ensemble of ML

models, while Panel B shows the results of the strategies that combine the individual ML portfolios. Since

we initially require one year of daily returns for each strategy in order to estimate covariance matrices,

these results comprise the period from January 2007 to December 2018. The first question we address

is whether it is better to first create an ensemble of ML models, and then create a long-short strategy

based on the ensemble forecasts (as done, for example, by Krauss et al., 2017), or whether it is better

to aggregate the long-short strategies obtained with different ML models (the “metastrategy” approach

of Gu et al., 2020). The long-short strategy using the forecasting ensemble method (ENS ML-EW, first

column of Panel A) earns on average 2.04% per month (1.45% on a net basis) with a monthly standard

deviation of 6.18%, resulting in a Sharpe ratio of 1.14 (0.81 on a net basis). The strategy that invests

equal weights in the individual ML long-short strategies (MS-EW, first column of Panel B) earns 1.81%

per month (1.24% on net basis), with a standard deviation of 5.93%, which translates into a SR of 1.06

(0.72 on a net basis). Despite the slightly superior performance of the ensemble approach, the difference

in Sharpe ratios is not statistically significant (not reported). The test of equality of SRs of each strategy

relative to the IBOVESPA also fails to detect any significant difference. Both strategies have maximum

drawdowns of approximately 60%, which is similar to those of the individual long-short strategies.

As with the individual ML models, the simple ERC long-short strategy using the equally-weighted

ensemble (ENS ML-ERC, second column of Panel A) is able to drastically reduce the volatility and the

29These two strategies are the ones on the last columns of Panels A and B of Table 4.
30Our results are not sensitive to this choice. Results with other values of λ, rolling-window sample covariance estimates,

or the shrinkage estimator of Ledoit and Wolf (2004) are qualitatively similar.
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maximum drawdown in comparison with the traditional long-short strategy, while earning a slightly lower

gross return (1.99% per month, compared to 2.04% for the ENS ML-EW strategy). In addition, because of

the lower borrowing costs of this strategy, which on average is short 70% of the total amount in the long

portfolio, its average net return is higher than that of the ENS ML-EW strategy (1.53% compared with

1.45%). The maximum drawdown of the ENS ML-ERC strategy is roughly half that of the ENS ML-EW

strategy. The SR of the ENS ML-ERC strategy is 1.59 before costs (significantly higher compared to the

IBOVESPA at the 5% level) and 1.18 after costs (significantly higher compared to the IBOVESPA at

the 10% level). The net SR is also significantly higher compared to the ENS ML-EW strategy at the 1%

significance level (not reported).

The last column of Panel B reports results for the MS-ERC approach, which balances the risk con-

tributions of all individual ML long-short strategies, as well as the total risk contributions of the total

long and short positions. This strategy earns on average 2.06% per month (1.64% on a net basis), with

a monthly standard deviation of 2.94%, resulting in a SR, before costs, of 2.10, which is significantly

higher compared to the IBOVESPA at the 1% level. The net SR of 1.61 is significantly higher compared

to the IBOVESPA at the 5% level, and is also significantly higher than the SRs of the other strategies in

Table 6 at the 1% significance level. Additionally, the MS-ERC approach results in a maximum draw-

down of approximately 16%, which is almost half that of the ENS ML-ERC strategy, and about a quarter

that of the two other strategies. The leverage ratio of the MS-ERC strategy is 1.66, which indicates that

on average, the short exposure is 66% of the long exposure, i.e. the strategy has, on average, a net long

exposure of approximately 34%. As shown in Figure 6, there is substantial variation in the value of κt

over time. Across the entire sample period, κt is always lower than 1, reaching a minimum of less than

30% in mid-2011. These results show that the MS-ERC strategy has at all times a net long exposure,

and indicate that the P1 portfolios are consistently more volatile than the P5 portfolios over this period,

although this varies over time. The MS-ERC approach is able to dynamically account for this feature, as

well as for the correlations between the individual ML long and short portfolios, to obtain balanced risk

contributions at the level of each ML strategy, as well as over all long and short positions.

Table 7 reports estimates of alphas and factor loadings for each of the combined ML strategies and

their corresponding p-values, calculated using heteroscedasticity and autocorrelation-consistent standard
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Table 6 Risk and return statistics of long-short strategies obtained using an ensemble of machine learning methods, or by
combining long-short strategies obtained with various machine learning methods. The table reports average monthly return
before (Ave) and after costs (Ave (net)), the monthly standard deviation (Std), the annualized Sharpe Ratio before (SR) and
after costs (SR (net)), the maximum drawdown (Max. DD), the average monthly turnover, and the average leverage. One,
two and three asterisks denote a statistically significant difference between the Sharpe ratio of the portfolio and that of the
IBOVESPA index over the same period at the 10%, 5% and 1% significance level, respectively, using the Ledoit and Wolf
(2008) test.

Panel A. Long-short strategies using an ensemble
of machine learning models

Panel B. Long-short strategies combining portfolios
obtained with different machine learning models

ENS ML-EW ENS ML-ERC MS-EW MS-ERC

Ave 2.04 1.99 1.81 2.06
Ave (net) 1.45 1.53 1.24 1.64
Std 6.18 3.78 5.93 2.94
SR 1.14 1.59∗∗ 1.06 2.10∗∗∗

SR (net) 0.81 1.18∗ 0.72 1.61∗∗

Max.DD 59.00 30.10 60.54 15.67
Ave. turnover 147.65 134.86 133.46 117.12
Ave. leverage 2.00 1.70 2.00 1.66

errors. As with the individual ML strategies, we find that alphas are positive and statistically significant.

The market exposure of the ENS ML-ERC (respectively, MS-ERC) strategy is positive and significant at

the 10% (respectively, 5%) level, which is not surprising given the net long exposure implied by the

ERC approach in this market. On the other hand, the market exposure of the ENS ML-EW and MS-

EW strategies are not significant. As with the individual ML strategies, the combined strategies have

negative loadings on the size (S MB) and value (HML) factors, and positive loadings on the momentum

(WML) factor. Interestingly, the MS-ERC has a similar alpha compared to the other combined strategies,

while having lower exposure to the size, value and momentum factors, and also a much lower maximum

drawdown, as shown on Table 6.

These results strongly support the idea of combining strategies obtained using various ML models

into a single strategy with balanced risk contributions. The MS-ERC approach outperforms, on a risk-

adjusted basis, all individual ML portfolios, the ensemble of ML portfolios, and the equally-weighted

combination of the ML portfolios, while keeping the maximum drawdown at a more acceptable level.

Other studies that apply ensembles of forecasts obtained with different ML models, such as Krauss et al.

(2017), also find benefits to aggregating different forecasts, however the underlying characteristics of the

resulting portfolio, such as the maximum drawdown, do not change as much.
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Figure 6: Evolution of the short weight multiplier (−κt) for a long-short equal risk contribution strategy combining machine
learning portfolios.

The risk reduction benefits obtained through the MS-ERC approach translate into higher average and

cumulative returns. Figure 7 plots the cumulative gross returns of the four strategies in Table 6, as well as

the excess market return (EMR) and the momentum (WML) factor. All series are scaled to the realized

volatility of the MS-ERC strategy. The total cumulative gross return earned by the MS-ERC strategy is

several times that of the other strategies.

4.5. Robustness with respect to transaction costs

In this section, we address potential concerns related to the robustness of our results with respect

to transaction costs, which throughout the paper, were assumed to consist of 0.15% for all trades, i.e.

a bid-ask spread of 0.30%. While the universe of stocks used in this study consists of the most liquid

stocks in the Brazilian market, this level of transaction costs may be too low, particularly for the earlier

part of the sample. Therefore, in Tables A.4, A.5 and A.6 in the Appendix, we replicate the main results

of the paper, i.e. Tables 3, 4 and 6, using a much more conservative estimate of 0.50%, which translates
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Table 7 Factor loadings and risk-adjusted returns of long-short strategies obtained using an ensemble of machine learning
methods, or by combining long-short strategies obtained with various machine learning methods. Excess returns are regressed
on the Fama and French (1996) three factors plus a momentum factor:

ri = αi + βirmt + β
S MB
i S MBt + β

HML
i HMLt + β

WML
i WMLt + ϵt,

where rmt is the excess return on a value-weighted market portfolio, S MBt is the small-minus-big or size factor, HMLt is
the high-minus-low book-to-market factor, and WMLt is the winner-minus-loser or momentum factor. Standard errors are
adjusted for heteroscedasticity and autocorrelation.

Panel A. Long-short strategies using an ensemble
of machine learning models

Panel B. Long-short strategies combining portfolios
obtained with different machine learning models

ENS ML-EW ENS ML-ERC MS-EW MS-ERC

Intercept (%) 1.73∗∗∗ 1.53∗∗∗ 1.56∗∗∗ 1.52∗∗∗

p-value < 0.01 < 0.01 < 0.01 < 0.01
rmt -0.05 0.09 ∗ -0.06 0.1∗∗

p-value 0.27 0.08 0.20 0.02
S MBt -0.37∗∗∗ -0.2∗∗∗ -0.37∗∗∗ -0.13∗∗

p-value < 0.01 0.01 < 0.01 0.02
HMLt -0.51∗∗∗ -0.16∗∗ -0.48∗∗∗ -0.16∗∗∗

p-value < 0.01 0.05 < 0.01 < 0.01
WMLt 0.28∗∗∗ 0.14∗∗ 0.28∗∗∗ 0.12∗∗

p-value < 0.01 0.02 < 0.01 0.02
Adj. R2 0.48 0.19 0.52 0.25

into a bid-ask spread of 1% for all trades. While, as expected, the net returns and Sharpe ratios of the

strategies decrease accordingly, the main results of the paper, namely the relative performance of the ML

portfolios, and the benefit from incorporating multiple ML portfolios using the ERC approach, remain.

In particular, Table A.6 shows that the MS-ERC continues to outperform the other portfolios, with a net

SR above 1, which is still statistically superior to the Sharpe ratio of the IBOVESPA index, albeit only

at the 10% significance level. Since these calculations assume no costs whatsoever for investing in the

IBOVESPA, these results are quite conservative.

We also consider that readers may have different opinions about the appropriate level of transaction

costs, and note that net returns can be easily calculated for any level of transaction costs as follows:

net return = gross return −
avg. turnover

100
× TC − (avg. leverage − 1) × BC, (19)
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Figure 7: Cumulative returns of various long-short strategies obtained using machine learning methods. The Ensemble Long-
Short strategy (ENS ML-EW) goes long (short) the stocks in the top (botom) quintile of return forecasts using an equally-
weighted ensemble of all machine learning forecasts. The Ensemble Equal Risk Contribution (ENS ML-ERC) strategy equal-
izes the risk contributions of the long and short portfolios obtained with the ensemble. The Multi-Strategy Equally Weighted
(MS-EW) approach invests equal amounts in long-short strategies obtained with individual machine learning methods. The
Multi-Strategy Equal Risk Contribution approach (MS-ERC) combines the long and short portfolios to achieve equal risk
contributions across machine learning methods and across the overall long and short exposures.

where TC is the trading transaction cost and BC is the borrowing cost.31 As an example of the utilization

of this formula, we apply it to recover the net returns of the ENS ML-ERC portfolio in Table 6. The

average return before costs is 1.99%, the average turnover is 134.86, and the average leverage is 1.70.

Using TC = 0.15% and BC = 0.375%, we have net return = 1.99−1.3486×0.15−0.70×0.375 = 1.525%,

which is rounded to the 1.53% shown in the table. Small differences may occur due to rounding.

31We thank an anonymous referee for the suggestion to include results using more conservative transaction costs, and the
Subject Editor for the suggestion to include the formula for the calculation of net returns.
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5. Concluding remarks

In this paper, we explore the use of machine learning (ML) models to forecast stock returns in the

Brazilian equity market, using a rich dataset of technical and fundamental indicators. While all ML mod-

els we test are able to produce portfolios that outperform the local market, the performance of traditional

long-short strategies based on ML models are hampered by the high volatility of the short portfolios.

We find that a simple Equal Risk Contribution (ERC) approach, which balances the risk contributions of

the long and short components of individual ML long-short strategies, significantly improves their risk-

adjusted returns. We further develop a multi-strategy ERC approach that combines multiple long-short

strategies obtained with various ML models, such that the risk contributions of all individual long-short

strategies are equal, and the aggregate risk contribution of all long positions equals that of all short posi-

tions. We find that the multi-strategy ERC approach outperforms all individual ML long-short strategies,

as well as strategies based on forecasts from an ensemble of ML models (with or without the use of

ERC), and a multi-strategy approach that invests equally in all ML strategies.

Our work has important managerial implications related to investment management, especially for

portfolio managers seeking to incorporate ML into their investment processes. Specifically, the multi-

strategy ERC approach delivers a solution to two problems faced in practice by a portfolio manager

applying ML models to create a long-short investment strategy. First, it provides a formal way to define

allocations to each ML long-short strategy, which does not require forecasts of which ML model will

outperform in the future. In this sense, each ML long-short strategy can be thought of as a trading desk

or unit, to which the portfolio manager allocates an equal risk budget. Second, the multi-strategy ERC

approach automatically balances the risk contributions of the overall long and short positions, by allowing

a variable degree of leverage in the short positions. We have shown this to be considerably relevant and

effective in the Brazilian market, due to the much higher risk of the short portfolios. Although we apply

the approach to combinations of long and short portfolios obtained using ML models, this approach is

general, and can be applied to any combination of long and short portfolios.
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Table A.1 Range of hyperparameters for different ML models

Model Hyperparameters/range Grid/Range

LASSO/Ridge Regularization parameter (λ) Default grid with 100 values

PLS/PCR Number of principal components Grid from 1 to p (number of features)

Bayesian Variable Selection Dispersion of prior distribution (c) 100, 500, 1000

Boosting
Maximum number of splits for individual trees
Learning rate
Number of training iterations

1 to 50
Fixed at 0.0025
1 to 500

Random Forests
Maximum number of splits for individual trees
Number of variables to sample

1 to 50
Equally-spaced grid with 10 values

Neural networks Number of epochs for each neural network Early stopping according to MSE in validation sample
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Table A.2 Performance of Portfolios Formed on Individual Firm Characteristics. The table reports metrics for equally-weighted, monthly rebalanced
portfolios formed on individual firm characteristics. P1 (P5) is the portfolio formed on the lowest (highest) quintile of each firm characteristic. The
characteristics are ordered such that P5 will produce a higher return than P1. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in
P1. The table reports the average monthly return (Ave), the monthly standard deviation (Std), the annualized Sharpe Ratio (SR), the monthly alpha from
four-factor model with the three Fama and French (1993) factors plus momentum, the maximum drawdown (Max. DD), and the monthly turnover. One,
two and three asterisks denote statistically significance at the 10%, 5% and 1% significance level. For Sharpe ratios, the test is based on the difference
between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period, using the Ledoit and Wolf (2008) test.

Accruals CAPEX to sales CAPEX to total assets Capitalization rate

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.73 1.07 0.34 0.80 0.81 0.01 0.85 0.99 0.14 0.51 0.85 0.33

Std 7.72 6.98 5.09 6.44 7.20 4.12 7.18 6.05 4.12 8.29 6.62 4.57

SR -0.06 0.1 0.15 -0.03 -0.03 0.01 0 0.07 0.07 -0.15 -0.01 0.14

Alpha -0.12 0.41 0.53 0.09 -0.12 -0.21 -0.06 0.3 0.37 -0.23 0.09 0.31

Max.DD 74.06 58.13 45.78 55.30 69.39 70.39 64.12 48.47 44.45 81.89 61.61 60.96

Turnover 29.18 24.46 53.64 19.67 22.84 42.51 23.81 21.46 45.27 30.41 35.43 65.83

Change in inventory to total assets Change in leverage Change in liquidity Coverage ratio

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.74 1.07 0.34 0.71 1.11 0.40 1.08 1.12 0.04 0.42 1.30 0.88

Std 7.67 7.78 3.96 6.68 7.51 3.77 6.37 7.77 3.82 8.74 5.77 5.34

SR -0.06 0.1 0.15 -0.08 0.11 0.21 0.12 0.12 0.02 -0.18 0.27 0.35

Alpha 0.02 0.46 0.43 -0.01 0.43 0.44 0.26 0.54 0.28 -0.27 0.47∗∗ 0.75∗

Max.DD 68.55 60.68 51.53 59.20 63.46 47.63 50.43 60.05 52.30 83.38 51.39 53.44

Turnover 45.42 46.93 92.35 34.74 33.63 68.37 37.19 35.40 72.60 23.26 17.13 40.38

Didivend payout ratio Dividend yield Dividend yield stability Downside volatility 1

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.84 1.22 0.38 0.70 1.46 0.76 1.16 1.19 0.03 0.51 1.39 0.88

Std 9.21 4.94 6.63 7.48 5.44 4.11 5.03 7.63 5.60 9.86 4.38 7.47

SR -0.01 0.25 0.14 -0.07 0.38∗∗ 0.35 0.21 0.15 0.02 -0.12 0.42∗ 0.31

Alpha 0.28 0.35∗ 0.07 -0.03 0.66∗∗∗ 0.69∗∗ 0.24 0.46 0.22 -0.05 0.42∗∗ 0.47

Max.DD 75.72 39.42 55.17 69.04 35.73 42.21 39.04 63.31 79.13 88.60 37.92 65.21

Turnover 47.35 28.46 75.81 21.07 25.49 46.55 41.48 33.75 75.23 26.72 24.34 51.06

56



Table A.2 Continued: Performance of Portfolios Formed on Individual Firm Characteristics. The table reports metrics for equally-weighted, monthly
rebalanced portfolios formed on individual firm characteristics. The characteristics are ordered such that P5 will produce a higher return than P1. P1 (P5)
is the portfolio formed on the lowest (highest) quintile of each firm characteristic. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in
P1. The table reports the average monthly return (Ave), the monthly standard deviation (Std), the annualized Sharpe Ratio (SR), the monthly alpha from
four-factor model with the three Fama and French (1993) factors plus momentum, the maximum drawdown (Max. DD), and the monthly turnover. One,
two and three asterisks denote statistically significance at the 10%, 5% and 1% significance level. For Sharpe ratios, the test is based on the difference
between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period, using the Ledoit and Wolf (2008) test.

Downside volatility 2 Downside volatility 3 EBIT growth EBIT to total assets

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.57 1.61 1.04 0.80 1.54 0.74 0.34 1.66 1.32 0.29 1.19 0.90

Std 9.58 4.41 7.08 9.95 4.49 7.47 8.00 7.11 4.30 8.86 5.43 5.69

SR -0.1 0.59∗∗∗ 0.38 -0.02 0.53∗∗ 0.26 -0.22 0.39∗∗ 0.57∗ -0.22 0.21 0.35

Alpha -0.02 0.71∗∗∗ 0.73∗ 0.27 0.58∗∗∗ 0.31 -0.43 0.92∗∗ 1.34∗∗∗ -0.39 0.35∗ 0.74∗

Max.DD 86.62 33.44 60.94 87.94 39.95 65.46 80.25 55.46 41.79 86.10 46.48 57.86

Turnover 49.72 54.15 103.87 35.15 35.48 70.63 28.40 30.53 58.93 22.91 15.35 38.26

EBIT volatility EPS growth Earnings volatility Growth indicator 1

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 1.03 1.32 0.29 0.69 1.40 0.71 0.88 1.26 0.38 0.31 1.65 1.34

Std 6.20 7.02 4.61 8.00 7.11 4.70 6.26 6.86 4.50 8.28 7.03 4.68

SR 0.09 0.23 0.16 -0.07 0.26 0.31 0.01 0.2 0.21 -0.23 0.39∗∗ 0.56

Alpha 0.09 0.55 0.46 -0.03 0.63∗ 0.65∗ 0.03 0.47 0.44 -0.37 0.84∗∗ 1.22∗∗∗

Max.DD 46.37 55.54 67.26 75.79 56.15 41.81 48.29 54.54 62.05 78.10 55.22 50.70

Turnover 11.71 21.74 33.45 30.03 30.78 60.81 11.79 20.15 31.93 48.31 50.34 98.65

Growth indicator 2 Growth indicator 3 Growth indicator 4 Leverage

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.33 1.48 1.15 0.66 1.16 0.51 0.16 1.67 1.51 1.03 1.42 0.39

Std 7.57 6.42 4.38 7.12 6.94 3.62 8.21 6.91 4.49 6.92 6.72 3.65

SR -0.24 0.33∗∗ 0.53 -0.1 0.15 0.25 -0.3 0.41∗∗ 0.64∗ 0.08 0.29 0.19

Alpha -0.24 0.54∗ 0.78∗∗ -0.07 0.4 0.47∗ -0.5 0.91∗∗ 1.41∗∗∗ 0.33 0.71∗∗∗ 0.39

Max.DD 79.89 48.68 43.89 60.99 56.20 34.47 80.88 54.96 33.48 66.39 52.51 43.31

Turnover 50.81 54.49 105.30 61.64 60.15 121.79 44.47 46.18 90.65 20.99 16.72 37.72
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Table A.2 Continued: Performance of Portfolios Formed on Individual Firm Characteristics. The table reports metrics for equally-weighted, monthly
rebalanced portfolios formed on individual firm characteristics. The characteristics are ordered such that P5 will produce a higher return than P1. P1 (P5)
is the portfolio formed on the lowest (highest) quintile of each firm characteristic. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in
P1. The table reports the average monthly return (Ave), the monthly standard deviation (Std), the annualized Sharpe Ratio (SR), the monthly alpha from
four-factor model with the three Fama and French (1993) factors plus momentum, the maximum drawdown (Max. DD), and the monthly turnover. One,
two and three asterisks denote statistically significance at the 10%, 5% and 1% significance level. For Sharpe ratios, the test is based on the difference
between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period, using the Ledoit and Wolf (2008) test.

Liquidity Momentum indicator 1 Momentum indicator 2 Momentum indicator 3

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.46 1.13 0.67 0.78 1.50 0.72 1.01 1.18 0.17 0.51 1.75 1.24

Std 7.06 7.25 4.35 8.02 6.58 5.15 6.84 8.25 4.91 9.67 5.96 7.23

SR -0.2 0.13 0.33 -0.03 0.34∗ 0.31 0.07 0.13 0.09 -0.13 0.52∗∗ 0.44

Alpha -0.31 0.49∗ 0.81∗∗ 0.09 0.67∗ 0.58 0.24 0.48 0.24 0.22 0.52∗ 0.29

Max.DD 72.11 60.12 38.13 72.49 57.02 58.32 62.58 68.43 76.92 86.08 39.70 62.41

Turnover 23.85 20.59 44.44 147.17 153.59 300.77 155.16 149.39 304.55 43.82 46.55 90.37

Momentum indicator 4 Money flow Net debt to EBITDA Price to book

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.41 1.89 1.48 1.05 1.05 0.00 0.75 1.01 0.25 0.84 1.18 0.33

Std 9.80 6.07 7.37 7.17 6.23 3.87 7.40 6.95 3.71 5.80 9.32 6.52

SR -0.16 0.59∗∗ 0.52 0.09 0.11 0 -0.05 0.07 0.12 -0.01 0.12 0.2

Alpha 0.01 0.71∗∗ 0.7 0.24 0.34 0.09 0 0.31 0.31 0.02 0.55 0.52

Max.DD 86.38 36.70 64.62 62.86 54.22 80.03 66.05 65.38 44.20 52.15 76.68 83.84

Turnover 58.13 61.05 119.18 156.28 150.28 306.56 25.79 26.54 52.33 20.09 27.05 47.13

Price to earnings Price to earnings growth Quality indicator 1 Quality indicator 2

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.72 0.81 0.09 0.81 0.98 0.17 0.82 1.10 0.28 1.02 1.08 0.06

Std 8.05 5.92 4.45 5.74 5.39 2.60 6.21 6.57 2.82 6.70 5.82 2.87

SR -0.06 -0.03 0.04 -0.03 0.08 0.11 -0.02 0.13 0.16 0.08 0.13 0.03

Alpha 0.03 0.02 -0.01 0.07 0.14 0.07 0.06 0.33 0.26 0.25 0.27 0.02

Max.DD 77.26 54.86 63.72 48.22 51.15 39.97 54.53 55.08 53.85 55.98 46.58 54.85

Turnover 28.01 32.47 60.48 40.71 38.21 78.91 47.91 49.11 97.03 37.41 48.38 85.79
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Table A.2 Continued: Performance of Portfolios Formed on Individual Firm Characteristics. The table reports metrics for equally-weighted, monthly
rebalanced portfolios formed on individual firm characteristics. The characteristics are ordered such that P5 will produce a higher return than P1. P1 (P5)
is the portfolio formed on the lowest (highest) quintile of each firm characteristic. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in
P1. The table reports the average monthly return (Ave), the monthly standard deviation (Std), the annualized Sharpe Ratio (SR), the monthly alpha from
four-factor model with the three Fama and French (1993) factors plus momentum, the maximum drawdown (Max. DD), and the monthly turnover. One,
two and three asterisks denote statistically significance at the 10%, 5% and 1% significance level. For Sharpe ratios, the test is based on the difference
between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period, using the Ledoit and Wolf (2008) test.

Quality indicator 3 Quality indicator 4 Quality indicator 5 Quality indicator 6

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.56 1.22 0.66 0.38 1.48 1.10 0.62 1.43 0.80 0.75 1.42 0.67

Std 8.11 5.64 4.58 8.30 6.97 4.82 6.99 6.38 3.38 7.05 6.20 3.40

SR -0.13 0.22 0.28 -0.2 0.31∗ 0.46 -0.12 0.31∗ 0.4∗ -0.05 0.31∗∗ 0.33

Alpha -0.12 0.33 0.45 -0.27 0.68∗ 0.95∗ -0.19 0.73∗∗∗ 0.92∗∗∗ 0.02 0.68∗∗∗ 0.66∗∗

Max.DD 74.28 38.93 47.79 76.70 53.65 51.28 57.75 48.91 25.19 58.43 46.63 24.96

Turnover 26.97 22.24 49.21 47.40 50.08 97.48 30.84 32.10 62.94 48.42 51.28 99.71

Quality indicator 7 Quality indicator 8 ROE ROIC

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.79 1.41 0.62 1.11 1.15 0.04 0.46 0.98 0.52 0.34 1.13 0.80

Std 6.80 7.63 4.23 6.81 6.74 2.74 8.39 5.90 4.82 9.59 5.44 6.41

SR -0.04 0.25 0.32 0.13 0.15 0.02 -0.16 0.07 0.21 -0.19 0.17 0.29

Alpha 0.11 0.6∗ 0.5 0.37 0.4 0.03 -0.23 0.22 0.44 -0.28 0.3 0.58

Max.DD 61.99 66.40 58.10 53.62 55.43 62.09 84.64 49.08 52.44 86.88 44.73 56.26

Turnover 25.87 27.19 53.06 60.72 61.48 122.20 24.23 18.08 42.31 27.43 16.48 43.91

Sales growth Sales volatility Technical indicator 1 Technical indicator 2

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.55 1.01 0.47 1.01 1.14 0.14 0.50 0.53 0.03 0.55 1.92 1.37

Std 7.60 7.43 5.79 6.93 6.32 4.78 7.04 6.50 4.13 7.96 6.21 4.88

SR -0.14 0.07 0.21 0.07 0.16 0.07 -0.18 -0.18 0.01 -0.14 0.59∗∗∗ 0.6

Alpha -0.34 0.47 0.81 0.25 0.27 0.01 -0.25 -0.22 0.03 -0.09 1.09∗∗∗ 1.17∗∗∗

Max.DD 71.69 62.79 56.05 60.79 46.89 72.35 78.26 64.43 79.37 77.70 41.03 46.50

Turnover 25.59 25.56 51.15 22.03 13.01 35.04 162.08 162.74 324.82 137.55 139.11 276.66
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Table A.2 Continued: Performance of Portfolios Formed on Individual Firm Characteristics. The table reports metrics for equally-weighted, monthly
rebalanced portfolios formed on individual firm characteristics. The characteristics are ordered such that P5 will produce a higher return than P1. P1 (P5)
is the portfolio formed on the lowest (highest) quintile of each firm characteristic. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in
P1. The table reports the average monthly return (Ave), the monthly standard deviation (Std), the annualized Sharpe Ratio (SR), the monthly alpha from
four-factor model with the three Fama and French (1993) factors plus momentum, the maximum drawdown (Max. DD), and the monthly turnover. One,
two and three asterisks denote statistically significance at the 10%, 5% and 1% significance level. For Sharpe ratios, the test is based on the difference
between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period, using the Ledoit and Wolf (2008) test.

Technical indicator 3 Technical indicator 4 Technical indicator 5 Trend in CAPEX to total assets

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.54 2.04 1.50 0.21 0.92 0.71 0.36 1.05 0.69 0.72 1.14 0.41

Std 8.21 6.07 5.39 7.37 6.17 4.47 8.14 5.54 5.32 6.71 6.86 3.39

SR -0.13 0.67∗∗∗ 0.63 -0.31 0.03 0.33 -0.21 0.12 0.29 -0.07 0.14 0.21

Alpha -0.08 1.14∗∗∗ 1.22∗∗∗ -0.42 0.03 0.46 -0.23 0.08 0.31 -0.01 0.46∗ 0.47

Max.DD 78.40 37.55 47.12 78.24 64.41 54.42 83.18 52.41 52.21 56.49 50.55 51.11

Turnover 123.49 124.64 248.13 135.08 140.24 275.32 96.90 100.27 197.17 51.56 55.63 107.19

Trend in asset turnover Trend in cash flow from operations Trend in profit margin Value indicator 1

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 1.09 1.13 0.04 0.84 1.04 0.20 0.33 1.35 1.02 0.99 1.75 0.76

Std 6.65 7.08 3.73 6.75 7.54 3.71 8.41 6.98 4.59 6.27 7.93 4.63

SR 0.12 0.13 0.02 -0.01 0.08 0.1 -0.22 0.24 0.42 0.07 0.39∗∗ 0.42

Alpha 0.4 0.34 -0.07 0.11 0.39 0.28 -0.24 0.52 0.76∗ 0.22 0.97∗∗∗ 0.75∗∗

Max.DD 60.45 52.69 58.63 58.07 61.71 58.09 77.77 57.95 44.45 58.99 61.08 69.70

Turnover 54.23 54.76 108.99 58.59 57.60 116.19 49.61 50.87 100.48 17.86 26.64 44.49

Value indicator 2 Value indicator 3 Value indicator 4 Volatility indicator 1

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.75 0.93 0.17 0.65 0.96 0.31 0.44 1.45 1.01 0.51 1.31 0.81

Std 6.42 7.62 3.72 8.16 6.58 4.14 6.92 6.93 4.27 9.89 4.59 7.37

SR -0.06 0.03 0.09 -0.09 0.05 0.13 -0.21 0.3 0.51∗ -0.12 0.34∗ 0.28

Alpha 0 0.28 0.28 -0.1 0.3 0.4 -0.39 0.66∗∗ 1.05∗∗∗ -0.09 0.42∗∗ 0.51

Max.DD 61.83 66.26 63.71 78.36 61.70 48.41 64.45 55.73 34.36 89.31 39.38 65.52

Turnover 31.07 25.83 56.90 28.64 35.73 64.37 18.06 20.79 38.85 23.94 20.73 44.67
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Table A.2 Continued: Performance of Portfolios Formed on Individual Firm Characteristics. The table reports metrics for equally-weighted, monthly
rebalanced portfolios formed on individual firm characteristics. The characteristics are ordered such that P5 will produce a higher return than P1. P1 (P5)
is the portfolio formed on the lowest (highest) quintile of each firm characteristic. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in
P1. The table reports the average monthly return (Ave), the monthly standard deviation (Std), the annualized Sharpe Ratio (SR), the monthly alpha from
four-factor model with the three Fama and French (1993) factors plus momentum, the maximum drawdown (Max. DD), and the monthly turnover. One,
two and three asterisks denote statistically significance at the 10%, 5% and 1% significance level. For Sharpe ratios, the test is based on the difference
between the Sharpe ratio of the portfolio and that of the IBOVESPA index over the same period, using the Ledoit and Wolf (2008) test.

Volatility indicator 2 Volatility indicator 3

P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.93 1.29 0.37 0.61 1.32 0.70

Std 9.78 4.48 7.27 10.12 4.54 7.50

SR 0.02 0.33∗ 0.13 -0.08 0.35∗ 0.24

Alpha 0.33 0.38∗ 0.05 0.05 0.43∗∗ 0.38

Max.DD 86.03 39.60 71.04 90.53 38.84 69.37

Turnover 46.84 49.97 96.82 31.59 32.39 63.98
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Table A.3 Performance of Baseline Machine Learning Portfolios. The table reports out-of-sample performance metrics for equally-weighted quintile
portfolios formed on predicted returns using machine learning methods. P1 (P5) is the portfolio formed on the lowest (highest) quintile of predicted
returns. P5 − P1 is a hedge portfolio long the stocks in P5 and short the stocks in P1. The table reports average monthly return before (Ave) and after costs
(Ave (net)), the monthly standard deviation (Std), the annualized Sharpe Ratio before (SR) and after costs (SR (net)), the maximum drawdown (Max. DD),
the monthly turnover.

OLS (out-of-sample R2 = −0.0338) LASSO (out-of-sample R2 = 0.0079) Ridge (out-of-sample R2 = 0.0079) PLS (out-of-sample R2 = 0.0017)

P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1

Ave 0.30 0.78 1.05 1.41 1.91 1.61 0.22 0.61 0.97 1.64 1.94 1.72 0.07 0.55 0.87 1.55 1.92 1.86 0.03 0.87 1.10 1.52 1.92 1.90
Ave (net) 0.17 0.58 0.84 1.21 1.77 0.97 0.13 0.46 0.81 1.49 1.84 1.16 -0.02 0.41 0.72 1.41 1.83 1.32 -0.05 0.74 0.95 1.38 1.84 1.38
Std 8.65 6.53 6.12 5.91 6.33 5.17 9.32 6.37 6.04 6.16 5.99 6.23 8.85 6.27 6.11 6.07 6.07 5.80 9.77 7.19 6.40 5.74 5.13 7.18
SR -0.22 -0.04 0.1 0.32∗ 0.57∗∗ 1.08∗ -0.24 -0.14 0.06 0.44∗∗ 0.63∗∗ 0.96 -0.31 -0.17 0.01 0.4∗∗ 0.61∗∗ 1.11 -0.3 0.01 0.13 0.4∗ 0.72∗∗ 0.91
SR (net) -0.28 -0.15 -0.01 0.2 0.5∗∗ 0.65 -0.27 -0.22 -0.03 0.35∗ 0.57∗ 0.65 -0.34 -0.25 -0.08 0.31∗ 0.55∗ 0.79 -0.32 -0.06 0.05 0.31 0.66∗∗ 0.66
Max.DD 82.87 64.46 51.17 49.26 50.53 53.83 85.09 66.99 50.66 46.62 51.97 65.67 84.94 64.01 52.03 46.24 52.13 54.65 88.08 72.31 54.99 46.15 42.31 62.91
Turnover 86.24 131.89 140.14 136.71 91.57 177.81 59.37 99.31 107.42 102.54 66.35 125.72 57.04 93.55 100.10 96.80 63.30 120.35 48.54 86.83 96.85 92.99 53.78 102.32

PCR (out-of-sample R2 = 0.0049) Bayes (out-of-sample R2 = −0.0010) Boost (out-of-sample R2 = 0.0075) RF (out-of-sample R2 = −0.0030)

P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1

Ave 0.26 1.22 0.94 1.32 1.69 1.43 0.16 0.80 1.22 1.41 1.84 1.68 0.25 0.69 1.17 1.23 1.85 1.60 0.15 0.96 1.14 1.33 1.86 1.71
Ave (net) 0.19 1.08 0.80 1.18 1.61 0.90 0.04 0.61 1.02 1.22 1.71 1.06 0.16 0.54 1.00 1.07 1.73 1.02 0.02 0.76 0.93 1.13 1.72 1.07
Std 9.75 7.45 6.09 5.98 4.70 7.21 8.96 6.74 6.10 6.23 5.87 5.92 9.30 7.22 6.25 5.83 5.51 6.58 9.29 6.25 6.30 6.21 5.84 6.10
SR -0.21 0.16 0.05 0.27 0.61∗∗ 0.69 -0.27 -0.03 0.2 0.3 0.58∗∗ 0.98 -0.23 -0.08 0.17 0.22 0.62∗∗ 0.84 -0.27 0.05 0.15 0.26 0.59∗∗ 0.97
SR (net) -0.24 0.1 -0.04 0.19 0.55∗∗ 0.43 -0.32 -0.13 0.09 0.2 0.5∗ 0.62 -0.26 -0.15 0.08 0.12 0.55∗∗ 0.54 -0.31 -0.06 0.04 0.15 0.51∗∗ 0.61
Max.DD 88.51 64.44 51.17 51.00 39.76 66.59 84.68 65.99 48.84 48.30 51.14 62.80 90.64 66.72 56.69 56.38 40.64 67.78 88.85 56.80 54.87 50.19 46.65 58.29
Turnover 51.50 88.16 97.04 91.42 54.34 105.84 79.14 123.98 131.50 124.97 86.91 166.06 62.38 100.81 110.16 104.19 74.78 137.16 85.21 132.78 140.03 135.79 94.92 180.13

NN1 (out-of-sample R2 = −0.0802) NN2 (out-of-sample R2 = −0.0180) NN3 (out-of-sample R2 = 0.0033) NN4 (out-of-sample R2 = 0.0092)

P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1

Ave 0.28 1.02 1.24 1.29 1.61 1.33 0.17 1.18 1.14 1.28 1.67 1.49 -0.01 1.06 1.14 1.31 1.94 1.95 0.07 0.93 0.93 1.37 2.13 2.06
Ave (net) 0.15 0.82 1.03 1.09 1.47 0.69 0.05 0.98 0.93 1.08 1.52 0.86 -0.12 0.87 0.94 1.12 1.81 1.33 -0.03 0.76 0.74 1.18 2.02 1.48
Std 7.92 6.50 6.70 6.26 6.42 4.97 8.45 6.58 6.22 6.23 6.35 5.29 8.59 6.75 6.69 5.75 6.08 5.51 9.21 7.01 5.95 5.90 5.79 5.96
SR -0.25 0.08 0.2 0.24 0.4∗ 0.93∗ -0.28 0.17 0.15 0.23 0.44∗∗ 0.98 -0.35 0.1 0.14 0.27 0.61∗∗ 1.22∗ -0.3 0.04 0.04 0.3 0.76∗∗ 1.2∗

SR (net) -0.31 -0.02 0.09 0.13 0.33 0.48 -0.33 0.06 0.04 0.12 0.36∗ 0.56 -0.4 0 0.04 0.15 0.54∗∗ 0.84 -0.34 -0.05 -0.07 0.19 0.69∗∗ 0.86
Max.DD 83.45 51.68 55.44 50.61 55.14 39.77 85.13 53.11 52.62 57.61 50.66 52.43 87.73 55.46 54.58 49.93 49.04 55.28 87.78 66.39 51.50 50.36 48.07 55.61
Turnover 89.28 135.20 143.34 136.44 93.85 183.13 84.41 133.03 140.29 137.10 94.14 178.55 77.01 126.49 134.69 130.56 86.12 163.13 66.94 115.07 126.05 124.85 76.47 143.41

NN5 (out-of-sample R2 = 0.0093) ENS ML (out-of-sample R2 = 0.0096)

P1 P2 P3 P4 P5 P5 − P1 P1 P2 P3 P4 P5 P5 − P1

Ave 0.17 0.89 1.13 1.38 1.89 1.72 0.02 0.73 1.26 1.42 2.02 2.00
Ave (net) 0.07 0.72 0.94 1.20 1.78 1.15 -0.08 0.55 1.06 1.24 1.90 1.41
Std 9.50 7.00 6.18 5.76 5.46 6.38 9.21 6.72 6.52 5.76 5.76 6.11
SR -0.25 0.01 0.15 0.31 0.65∗∗ 0.93 -0.32 -0.07 0.21 0.34 0.69∗∗ 1.13∗

SR (net) -0.29 -0.07 0.05 0.21 0.58∗∗ 0.63 -0.36 -0.16 0.11 0.23 0.62∗∗ 0.8
Max.DD 87.82 65.87 54.12 52.95 45.94 62.42 89.79 63.68 49.43 52.64 47.54 59.00
Turnover 60.64 109.11 122.50 117.74 70.70 131.34 69.39 119.62 131.18 123.65 79.29 148.68
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Table A.4 Performance of Baseline Machine Learning Portfolios (50 basis points transaction costs). The table reports out-
of-sample performance metrics for equally-weighted quintile portfolios formed on predicted returns using machine learning
methods, considering a conservative transaction cost assumption of 50 basis points per round trip transaction. P1 (P5) is the
portfolio formed on the lowest (highest) quintile of predicted returns. P5 − P1 is a hedge portfolio long the stocks in P5 and
short the stocks in P1. The table reports average monthly return before (Ave) and after costs (Ave (net)), the monthly standard
deviation (Std), the annualized Sharpe Ratio before (SR) and after costs (SR (net)), the maximum drawdown (Max. DD), the
monthly turnover. The table also reports, for each machine learning method, the out-of-sample (OOS) R2.

OLS (OOS R2 = −0.0338) LASSO (OOS R2 = 0.0079) Ridge (OOS R2 = 0.0079) PLS (OOS R2 = 0.0017)

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.30 1.91 1.61 0.22 1.94 1.72 0.07 1.92 1.86 0.03 1.92 1.90
Ave (net) -0.13 1.45 0.35 -0.07 1.61 0.72 -0.22 1.61 0.90 -0.22 1.65 1.02
Std 8.65 6.33 5.17 9.32 5.99 6.23 8.85 6.07 5.80 9.77 5.13 7.18
SR -0.22 0.57∗∗ 1.08∗ -0.24 0.63∗∗ 0.96 -0.31 0.61∗∗ 1.11 -0.3 0.72∗∗ 0.91
SR (net) -0.4 0.32 0.23 -0.35 0.43∗ 0.4 -0.42 0.43∗ 0.54 -0.38 0.53∗∗ 0.49
Max.DD 86.27 52.06 57.21 88.19 52.70 67.42 87.64 52.83 56.08 89.35 43.08 64.37
Turnover 86.24 91.57 177.81 59.37 66.35 125.72 57.04 63.30 120.35 48.54 53.78 102.32

PCR (OOS R2 = 0.0049) Bayes (OOS R2 = −0.0010) Boost (OOS R2 = 0.0075) RF (OOS R2 = −0.0030)

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.26 1.69 1.43 0.16 1.84 1.68 0.25 1.85 1.60 0.15 1.86 1.71
Ave (net) 0.01 1.42 0.53 -0.23 1.40 0.48 -0.06 1.47 0.54 -0.28 1.39 0.44
Std 9.75 4.70 7.21 8.96 5.87 5.92 9.30 5.51 6.58 9.29 5.84 6.10
SR -0.21 0.61∗∗ 0.69 -0.27 0.58∗∗ 0.98 -0.23 0.62∗∗ 0.84 -0.27 0.59∗∗ 0.97
SR (net) -0.3 0.41∗ 0.26 -0.42 0.32 0.28 -0.35 0.38 0.28 -0.43 0.31 0.25
Max.DD 89.86 40.57 68.31 88.93 52.28 65.90 91.93 41.75 70.30 91.15 47.62 64.63
Turnover 51.50 54.34 105.84 79.14 86.91 166.06 62.38 74.78 137.16 85.21 94.92 180.13

NN1 (OOS R2 = −0.0802) NN2 (OOS R2 = −0.0180) NN3 (OOS R2 = 0.0033) NN4 (OOS R2 = 0.0092)

P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.28 1.61 1.33 0.17 1.67 1.49 -0.01 1.94 1.95 0.07 2.13 2.06
Ave (net) -0.17 1.14 0.05 -0.25 1.19 0.23 -0.39 1.51 0.76 -0.26 1.75 0.98
Std 7.92 6.42 4.97 8.45 6.35 5.29 8.59 6.08 5.51 9.21 5.79 5.96
SR -0.25 0.4∗ 0.93∗ -0.28 0.44∗∗ 0.98 -0.35 0.61∗∗ 1.22∗ -0.3 0.76∗∗∗ 1.2∗

SR (net) -0.45 0.15 0.03 -0.45 0.18 0.15 -0.51 0.37∗ 0.48 -0.42 0.53∗∗ 0.57
Max.DD 86.68 57.15 44.45 88.19 52.24 55.96 90.89 50.84 58.43 90.04 49.06 58.05
Turnover 89.28 93.85 183.13 84.41 94.14 178.55 77.01 86.12 163.13 66.94 76.47 143.41

NN5 (OOS R2 = 0.0093) ENS ML (OOS R2 = 0.0096)

P1 P5 P5 − P1 P1 P5 P5 − P1

Ave 0.17 1.89 1.72 0.02 2.02 2.00
Ave (net) -0.14 1.53 0.69 -0.33 1.62 0.89
Std 9.50 5.46 6.38 9.21 5.76 6.11
SR -0.25 0.65∗∗ 0.93 -0.32 0.69∗∗ 1.13∗

SR (net) -0.36 0.42∗ 0.38 -0.45 0.46∗ 0.5
Max.DD 89.90 47.06 64.43 91.43 48.69 61.18
Turnover 60.64 70.70 131.34 69.39 79.29 148.68
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Table A.5 Risk and return statistics of long-short strategies obtained with different machine learning methods (50 basis points transaction costs).The table
reports out-of-sample performance metrics for different long-short strategies formed on predicted returns using machine learning methods, considering a
conservative transaction cost assumption of 50 basis points per round trip transaction. Panel A shows results for traditional long-short strategies which are
long (short) the highest (lowest) decile of predicted returns with each machine learning method. Panel B shows results for Equal Risk Contribution (ERC)
long-short strategies, which equalize the risk contributions of the long and short legs. The table reports the average monthly return before (Ave) and after
costs (Ave (net)), the monthly standard deviation (Std), the annualized Sharpe Ratio before (SR) and after costs (SR (net)), the maximum drawdown (Max.
DD), the average monthly turnover, and the average leverage.

Panel A: Traditional long-short strategies

OLS LASSO Ridge PLS PCR Bayes Boost RF NN1 NN2 NN3 NN4 NN5 ENS ML

Ave 1.61 1.72 1.86 1.90 1.43 1.68 1.60 1.71 1.33 1.49 1.95 2.06 1.72 2.00
Ave (net) 0.35 0.72 0.90 1.02 0.53 0.48 0.54 0.44 0.05 0.23 0.76 0.98 0.69 0.89
Std 5.17 6.23 5.80 7.18 7.21 5.92 6.58 6.10 4.97 5.29 5.51 5.96 6.38 6.11
SR 1.08∗ 0.96 1.11 0.91 0.69 0.98 0.84 0.97 0.93∗ 0.98 1.22∗ 1.2∗ 0.93 1.13∗

SR (net) 0.23 0.4 0.54 0.49 0.26 0.28 0.28 0.25 0.03 0.15 0.48 0.57 0.38 0.5
Max.DD 57.21 67.42 56.08 64.37 68.31 65.90 70.30 64.63 44.45 55.96 58.43 58.05 64.43 61.18
Turnover 177.81 125.72 120.35 102.32 105.84 166.06 137.16 180.13 183.13 178.55 163.13 143.41 131.34 148.68
Leverage 2.00 2.00 1.96 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Panel B: Equal risk contribution long-short strategies

OLS LASSO Ridge PLS PCR Bayes Boost RF NN1 NN2 NN3 NN4 NN5 ENS ML

Ave 1.76 1.72 1.76 1.72 1.51 1.87 1.56 1.74 1.41 1.50 1.98 1.98 1.71 1.95
Ave (net) 0.59 0.83 0.91 1.00 0.82 0.75 0.68 0.65 0.20 0.34 0.91 1.04 0.83 1.00
Std 3.95 4.18 4.11 4.35 4.02 4.20 3.84 3.96 3.67 3.88 3.86 4.05 4.08 3.81
SR 1.42∗∗ 1.29∗∗ 1.32∗∗ 1.16∗ 1.01 1.43∗∗ 1.17∗ 1.32∗ 1.21∗∗ 1.21∗∗ 1.62∗∗ 1.52∗∗ 1.27∗∗ 1.56∗∗

SR (net) 0.39 0.55 0.6 0.59 0.42 0.51 0.38 0.37 0.07 0.17 0.66 0.71 0.52 0.7
Max.DD 33.60 39.74 32.28 33.04 41.34 39.76 39.43 44.75 29.06 35.71 30.41 27.79 33.52 34.02
Turnover 172.59 119.84 114.54 93.87 92.81 161.66 125.63 164.15 178.79 172.26 155.44 133.29 121.75 136.83
Leverage 1.83 1.79 1.76 1.68 1.61 1.84 1.68 1.72 1.86 1.82 1.80 1.75 1.73 1.71
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Table A.6 Risk and return statistics of long-short strategies obtained using an ensemble of machine learning methods, or by
combining long-short strategies obtained with various machine learning methods (50 basis points transaction costs), consider-
ing a conservative transaction cost assumption of 50 basis points per round trip transaction. The table reports average monthly
return before (Ave) and after costs (Ave (net)), the monthly standard deviation (Std), the annualized Sharpe Ratio before (SR)
and after costs (SR (net)), the maximum drawdown (Max. DD), the average monthly turnover, and the average leverage.

Panel A. Long-short strategies using an ensemble
of machine learning models

Panel B. Long-short strategies combining portfolios
obtained with different machine learning models

ENS ML-EW ENS ML-ERC MS-EW MS-ERC

Ave 2.04 1.99 1.81 2.06
Ave (net) 0.93 1.05 0.77 1.23
Std 6.18 3.78 5.93 2.94
SR 1.14 1.59∗∗ 1.06 2.10∗∗∗

SR (net) 0.52 0.74 0.45 1.13∗

Max.DD 61.18 34.02 62.68 19.27
Turnover 147.65 136.83 133.46 117.12
Leverage 2.00 1.71 1.99 1.66

65



Figure A.1: Number of stocks in each quintile portfolio.
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Figure A.2: Variable importance measure by model

Obs.: We omit the graph for Ridge as it is essentially identical to that of LASSO.
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