Article Dans Une Revue Annales Henri Poincaré Année : 2022

First boundary Dirac eigenvalue and boundary capacity potential

Résumé

We derive new lower bounds for the first eigenvalue of the Dirac operator of an oriented hypersurface Σ bounding a noncompact domain in a spin asymptotically flat manifold (M n , g) with nonnegative scalar curvature. These bounds involve the boundary capacity potential and, in some cases, the capacity of Σ in (M n , g) yielding several new geometric inequalities. The proof of our main result relies on an estimate for the first eigenvalue of the Dirac operator of boundaries of compact Riemannian spin manifolds endowed with a singular metric which may have independent interest.
Fichier principal
Vignette du fichier
DiracHypersurfaceAF-RevisedVersion.pdf (264.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03703550 , version 1 (24-06-2022)

Identifiants

Citer

Simon Raulot. First boundary Dirac eigenvalue and boundary capacity potential. Annales Henri Poincaré, 2022, 24 (4), pp.1245-1264. ⟨10.1007/s00023-022-01233-6⟩. ⟨hal-03703550⟩
24 Consultations
38 Téléchargements

Altmetric

Partager

More