Anticipating the cost of drought events in France by super learning - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Anticipating the cost of drought events in France by super learning

Résumé

Drought events are the second most expensive type of natural disaster within the legal framework of the French natural disasters compensation scheme. In recent years, droughts have been remarkable in their geographical scale and intensity. We develop a new methodology to anticipate the cost of a drought event in France. The methodology hinges on super learning and takes into account the complex dependence structure induced in the data by the spatial and temporal nature of drought events.
Fichier principal
Vignette du fichier
sl_drought_v4.pdf (523.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03701743 , version 1 (22-06-2022)
hal-03701743 , version 2 (21-03-2023)

Identifiants

Citer

Geoffrey Ecoto, Antoine Chambaz. Anticipating the cost of drought events in France by super learning. 2022. ⟨hal-03701743v1⟩
109 Consultations
101 Téléchargements

Altmetric

Partager

More