Fast calibration of weak FARIMA models - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2023

Fast calibration of weak FARIMA models

Résumé

In this paper, we investigate the asymptotic properties of Le Cam's one-step estimator for weak Fractionally AutoRegressive Integrated Moving-Average (FARIMA) models. For these models, noises are uncorrelated but neither necessarily independent nor martingale differences errors. We show under some regularity assumptions that the onestep estimator is strongly consistent and asymptotically normal with the same asymptotic variance as the least squares estimator. We show through simulations that the proposed estimator reduces computational time compared with the least squares estimator. An application for providing remotely computed indicators for time series is proposed.
Fichier principal
Vignette du fichier
BBES.pdf (716.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03700112 , version 1 (20-06-2022)

Identifiants

Citer

Samir Ben Hariz, Alexandre Brouste, Youssef Esstafa, Marius Soltane. Fast calibration of weak FARIMA models. ESAIM: Probability and Statistics, 2023, 27, pp.156-173. ⟨10.1051/ps/2022021⟩. ⟨hal-03700112⟩
109 Consultations
42 Téléchargements

Altmetric

Partager

More