Limit theory for the first layers of the random convex hull peeling in the unit ball - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Limit theory for the first layers of the random convex hull peeling in the unit ball

Pierre Calka

Résumé

The convex hull peeling of a point set is obtained by taking the convex hull of the set and repeating iteratively the operation on the interior points until no point remains. The boundary of each hull is called a layer. We study the number of k-dimensional faces and the outer defect intrinsic volumes of the first layers of the convex hull peeling of a homogeneous Poisson point process in the unit ball whose intensity goes to infinity. More precisely we provide asymptotic limits for their expectation and variance as well as a central limit theorem. In particular, the growth rates do not depend on the layer.
Fichier principal
Vignette du fichier
Version_organisee.pdf (2.47 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03697428 , version 1 (16-06-2022)

Identifiants

Citer

Pierre Calka, Gauthier Quilan. Limit theory for the first layers of the random convex hull peeling in the unit ball. 2022. ⟨hal-03697428⟩
130 Consultations
87 Téléchargements

Altmetric

Partager

More