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Limit theory for the first layers of the random convex hull
peeling in the unit ball
Pierre Calka, Gauthier Quilan

June 16, 2022

Abstract
The convex hull peeling of a point set is obtained by taking the convex hull of the set and

repeating iteratively the operation on the interior points until no point remains. The boundary
of each hull is called a layer. We study the number of k-dimensional faces and the outer defect
intrinsic volumes of the first layers of the convex hull peeling of a homogeneous Poisson point
process in the unit ball whose intensity goes to infinity. More precisely we provide asymptotic
limits for their expectation and variance as well as a central limit theorem. In particular, the
growth rates do not depend on the layer.

1 Introduction
1.1 Context

Random polytopes as convex hulls of random points have been extensively studied in stochastic
geometry. An overview of the subject can be found in [29] and [34, Chapter 8.2] for instance. Let
Pλ be a Poisson point process with intensity measure λdx in a convex body K of Rd. The study
of the asymptotic behaviour as λ → ∞ of conv(Pλ) started with the work of Rényi and Sulanke
in [30, 31], in a binomial setting. They obtain in particular a different growth rate for the mean
number of extreme points when K is a smooth convex body with a C2-regular boundary and when
K is a polytope, namely polynomial for the former and logarithmic for the latter. Since then diverse
results on the number of k-dimensional faces and on the defect intrinsic volumes of conv(Pλ) have
been proved for both choices of K. We only consider the smooth case in this paper. Asymptotic
expectations are shown notably in [33, 28, 2]. In particular, it is known that the mean number of
extreme points grows like λ

d−1
d+1 up to a multiplicative constant. First-order results have then been

complemented by central limit theorems in [27, 36, 13]. Results on the variance of these quantities go
from general bounds in [5, 3] to explicit limits in [13, 14]. More recently, concentration inequalities
have been derived in [22]. The explicit formulas obtained by [11, 24, 25] are worth noting among
the very few non-asymptotic results available.
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Figure 1 – Example of a convex hull peeling in B2 with six layers (here the last layer has only one
point).

The subject of this paper is a generalization of the study of the convex hull of random points
to the so-called convex hull peeling. We start by taking the convex hull of the whole process and
then repeatedly take the convex hull of the points that were not extreme at the previous step
until no point remains. Let us write conv1(Pλ) := conv(Pλ) and by induction for any n ≥ 1,
convn+1(Pλ) := conv(int(convn(Pλ))∩Pλ). The boundary of the n-th convex hull ∂convn(Pλ) will
be called the n-th layer of the convex hull peeling of Pλ. The words peeling and layers were chosen
by analogy with the peeling of an onion, see Figure 1.

The convex hull peeling was first introduced by Barnett in [7] as a way to order multivariate data
and give a meaning to how central a point is with respect to a dataset. Indeed, the layer number
of a point can be interpreted as the depth of that point with respect to the input and we expect it
to be all the larger the more central the point is. The convex hull peeling has then been used in
robust statistics and outlier detection, see [21, 23, 32]. It fits into a list of classical techniques for
ordering multivariate data, including half-space depth, simplicial depth or zonoid depth, see e.g.
[18] for an overview on these techniques.

However it seems that very few theoretical results exist on the convex hull peeling of a random
sample. For instance, the survey [29] devotes a small section on convex hull peeling but does not
provide any reference and states that in continuation with the available asymptotic results for the
convex hull, investigations concerning expectations and deviation inequalities for [the subsequent
layers of the convex hull peeling] are unknown. To the best of our knowledge, there are mostly two
papers which deal with the asymptotic properties of the convex hull peeling of random points. The
first one due to Dalal [19] states that the mean total number of layers of the convex hull peeling of n
i.i.d. uniform points in any bounded region of Rd is lower and upper bounded by multiples of n

2
d+1 .

Very recently, a breakthrough work by Calder and Smart [12] greatly improves Dalal’s estimate.
Let Pλf be a Poisson point process of intensity measure λf(x)dx in K with f a continuous and
positive function on K. They consider the convex height function hλ(x) of any point x in Rd as the
largest n such that x ∈ int(convn(Pλf )). Note that Dalal’s work covers the particular problem of
estimating the expectation of max hλ when f = 1. Calder and Smart show that λ−

2
d+1hλ converges

uniformly in probability with an explicit exponential bound and almost surely to a multiple of a
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function h which is the unique viscosity solution of an explicit PDE. In other words, they obtain in
particular that when λ→∞, almost surely

λ−
2
d+1hλ

unif−→ αh (1.1)

where α is a positive constant which depends only on dimension d and h is the unique viscosity
solution of {

〈Dh, cof(−D2h)Dh〉 = f2 in int(K)
h = 0 on ∂K ,

cof(·) being the cofactor matrix. Denoting by Bd the unit ball of Rd, we observe that (1.1) implies
in the particular case when K = Bd and f = 1 that the rescaled total number of layers of the
peeling satisfies almost surely

λ−
2
d+1 max hλ −→ βd := (d+ 1)α

2d
d−1
d+1 Vol

2
d+1
d−1(Sd−1)

(1.2)

where Vold−1(Sd−1) is the surface area of the (d− 1)-dimensional unit sphere Sd−1.
Because of the normalization of hλ in (1.1), this uniform convergence result can only provide

information on the regime of the peeling limited to layers numbered λ
2
d+1 up to a multiplicative

constant. The authors do not investigate any combinatorial or geometric functional of these layers.
Nonetheless, they conjecture with a short heuristic argument that the number Nn(λ,t),0,λ of Poisson
points on a layer numbered n(λ, t) := btλ

2
d+1 c should satisfy a law of large numbers when λ→∞,

i.e. almost surely
λ−

d−1
d+1Nn(λ,t),0,λ −→

∫
{αh=t}

f
d−1
d+1 κ

1
d+1 dS

where κ is the Gauss curvature of the level set {αh = t} and dS is the Hausdorff measure of that
set. In particular, when K is the unit ball and f = 1, the conjectured result should read, see [12,
display (1.18)],

λ−
d−1
d+1Nn(λ,t),0,λ −→

d+ 1
2βd

(
1− β−1

d t
) d−1

2
+ (1.3)

where the constant βd is introduced at (1.2).
In comparison to [12], our approach is different, i.e. we consider the case K = Bd and f = 1,

we choose to fix a layer numbered n that does not depend on λ and study the geometric properties
of ∂convn(Pλ) as λ → ∞. In other words, we investigate a different regime, namely the regime
of the first layers in the context of uniform points in the ball. There are several reasons to do so:
when applying the convex hull peeling to outlier detection, we expect the outliers to be located on
the first layers of the peeling, which provides some motivation for understanding the cardinality
of these particular layers. Moreover, we intend to use a global scaling transformation on the ball
which has been introduced in [13] for the study of the convex hull and which is expected to bring
exhaustive information on the visible layers after rescaling, namely the first layers.

1.2 Model
Let Pλ be a Poisson point process of intensity measure λdx in the unit ball Bd of Rd. We

construct the consecutive hulls convn(Pλ), n ≥ 1, of the peeling of Pλ. For n ≥ 1 and k ∈
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{0, . . . , d−1}, we denote by Nn,k,λ the number of k-dimensional faces of the n-th layer ∂convn(Pλ)
and for k ∈ {1, . . . , d}, by Vn,k,λ the defect k-dimensional intrinsic volume of convn(Pλ), i.e.

Vn,k,λ = Vk(Bd)− Vk(convn(Pλ)) (1.4)

where Vk stands for the k-th intrinsic volume, see for example [34, p. 600] for a definition and some
properties of the intrinsic volumes.

We focus on these two families of random variables and aim at studying their first and second-
order properties.

1.3 Main results
For two non-negative functions f and g, we write f = O(g) if there exist a constant C > 0 and

λ0 > 0 such that for any λ ≥ λ0 we have f(λ) ≤ Cg(λ). Theorem 1.1 below provides expectation
and variance asymptotics as well as a central limit theorem for the variables Nn,k,λ.

Theorem 1.1. For any n ≥ 1 and k ∈ {0, . . . , d− 1} there exist Cn,k,d, C ′n,k,d ∈ (0,∞) such that

lim
λ→+∞

λ−
d−1
d+1 E[Nn,k,λ] = Cn,k,d and lim

λ→+∞
λ−

d−1
d+1 Var[Nn,k,λ] = C ′n,k,d.

Moreover, when λ→∞, we have

sup
t

∣∣∣∣∣P
(
Nn,k,λ − E[Nn,k,λ]√

Var[Nn,k,λ]
≤ t

)
− P(N (0, 1) ≤ t)

∣∣∣∣∣ = O
(
λ−

d−1
2(d+1) (log λ)3d+1

)
.

In Theorem 1.2, we derive similar results for the variables Vn,k,λ.

Theorem 1.2. For any n ≥ 1 and k ∈ {1, . . . , d} there exist CV,n,k,d, C ′V,n,k,d ∈ (0,∞) such that

lim
λ→+∞

λ
2
d+1 E[Vn,k,λ] = CV,n,k,d and lim

λ→+∞
λ
d+3
d+1 Var[Vn,k,λ] = C ′V,n,k,d.

Moreover, when λ→∞, we have

sup
t

∣∣∣∣∣P
(
Vn,k,λ − E[Vn,k,λ]√

Var[Vn,k,λ]
≤ t

)
− P(N (0, 1) ≤ t)

∣∣∣∣∣ = O
(
λ−

d−1
2(d+1) (log λ)3d+1

)
.

The rates in Theorems 1.1 and 1.2 are identical to those obtained for the first layer, i.e. the
convex hull of Pλ, as described in [13]. In particular, the underlying limiting expectations and
variances are proved to be different from zero. They have an explicit formulation in terms of a
random process derived from a homogeneous Poisson point process in the product space Rd−1×R+,
see Theorems 2.8 – 2.11. This solves the conjecture discussed in [12] and along the lines above (1.3)
in the particular regime when the layer number does not depend on the size of the input.

Our tools are those of stabilization theory that were used in [13] to prove precise variance asymp-
totics for the first layer. The key idea consists in writing Nn,k,λ and Vn,k,λ as a sum

∑
x∈Pλ ξ(x,Pλ)

for some functional ξ and proving that for a given point x this functional only depends on the pro-
cess in a neighbourhood of x. That is what we call stabilization. The importance of the stabilization
can already be seen in the study of the variance of Nn,k,λ as it implies that ξ(x,Pλ) and ξ(y,Pλ)
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are independent when x and y are far enough from each other, which simplifies the calculation of
the variance. The stabilization of ξ is in fact used much more extensively for all six results stated
in Theorems 1.1 and 1.2 and constitutes the main difficulty of this paper. Indeed, the formation
of each layer of the peeling requires a global knowledge of the point set and also of the history of
the previously constructed layers. In particular, for a given point x, there is no easy local criterion
for checking that x is on the n-th layer of the peeling. In this regard, the problem is significantly
different from the study of the convex hull as done in [13]. The only characterization that we can use
is incremental, see Lemma 2.5, and this explains why the proof of stabilization is done by induction
on the layer number. Incidentally, this also requires to estimate the position of each layer, see e.g.
Lemma 3.2.

The strategy of proof of the expectation and variance asymptotics in Theorem 1.1 is the follow-
ing.

— Using the decomposition of each variable as a sum over x ∈ Pλ of a functional ξ(x,Pλ), we
rewrite the expectation and variance of Nn,k,λ as an integral thanks to Mecke’s formula for
Poisson point processes.

— Dealing with this multiple integral, we intend to use Lebesgue’s dominated convergence
theorem after applying a suitable change of variables inside the integral. To do so, we need
to rescale the model. This leads us to introducing the notions of parabolic hull peeling in
the upper half-space, see Section 2.

— It then remains to show the convergence and domination of the integrands, rewritten as
either an expectation or a covariance of a local functional of the parabolic hull peeling. This
requires to show the so-called stabilization of the functionals, see Section 3. The stabilization
implies in turn general moment bounds and the convergence of the integrands, see Section
4.

The proof of the central limit theorem also relies on the stabilization results from Section 3 as well
as a Gauss approximation result in the particular setting of dependency graphs.

Finally, showing the positivity of the limiting expectations and variances represents another
challenge. It requires to introduce a particular configuration where the determination of the layers
and the calculation of the considered variables are natural and then to randomize this idealized
configuration. This general principle has been used previously for proving the positivity of the
limiting variances of N0,k,λ and V0,k,λ, see e.g. [27] and [3]. The construction that we do in the
context of the n-th layer is partly inspired by [19].

We have chosen to concentrate mainly on the variables Nn,k,λ throughout the paper and to
discuss briefly the adaptations that are needed in the case of the variables Vn,k,λ at the end of the
paper, see Section 5.2.

1.4 Outline
The paper is structured as follows.
— In Section 2 we introduce the scaling transformation and study its effect on the point process

and on the subsequent convex hulls. Incidentally we state a few basic properties on the
peeling. We then define the scores as functionals of a point x and of the point process such
that the variables Nn,k,λ and Vn,k,λ can be decomposed as sums of such scores. We conclude
with statements of more refined versions of the expectation and variance asymptotics of
Theorem 1.1, with precise limiting constants.

— Section 3 is devoted to proving the stabilization of the rescaled scores, i.e. that with proba-
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bility exponentially close to 1 they only depend on the process in the neighbourhood of the
point considered.

— In Section 4 we use stabilization properties shown to prove Lp bounds and a convergence of
in expectation of the rescaled scores.

— Section 5 contains the proofs of our main results.
— Finally, Section 6 collects several concluding remarks about possible extensions of our work

and open problems.

2 Rescaling and scores
In this section, we introduce an ad hoc scaling procedure originated in [35] and [13]. We then

study the image by that scaling transformation of the Poisson point process and of the layers of
the underlying convex hull peeling. Next we prove general properties on the construction of the
rescaled layers which are analogues of similar properties of the initial convex hull peeling. Finally
we introduce functionals that we call scores and we decompose Nn,k,λ as the sum over every point
of the process of these scores. This leads us to write explicit formulas for the constants in Theorem
1.1 and 1.2, where scores are involved.

2.1 Scaling transformation
To describe the scaling transformation that we will use on the point process, we first recall a

few definitions. We write Ted for the tangent space of Sd−1 at point ed = (0, 0, . . . , 0, 1). The
exponential map exped : Ted ∼= Rd−1 −→ Sd−1 maps a vector v of Ted to the vector u that lies at
the end of the geodesic of Sd−1 of length ‖v‖ that starts at ed with direction v. The function exped
induces a one-to-one map between Bd−1(π) and Sd−1 \ {−ed} of inverse exp−1 where Bl(r) denotes
the open ball centered at 0 of radius r in Rl. This lets us define a one-to-one map T (λ) between
Bd \ [0,−ed] and Wλ := λ

1
d+1Bd−1(π)× [0, λ

2
d+1 ) by

T (λ)(x) :=
(
λ

1
d+1 exp−1

(
x

‖x‖

)
, λ

2
d+1 (1− ‖x‖)

)
for all x ∈ Bd \ [0,−ed]. In general we will denote by w = (v, h) with v ∈ Rd−1 and h ∈ R+ a generic
point in Wλ. The transformation T (λ) was already used in [13] to obtain variance asymptotics of
functionals of the convex hull of Pλ that include the number of k-faces (short for k-dimensional
faces) and the k-th intrinsic volume. This transformation enjoys two important properties. First,
unit volume subsets ofWλ near the hyperplane Rd−1×{0} contain Θ(1) rescaled points and actually,
we can show that the limit point process is Poisson and has intensity 1, see Lemma 2.1. Secondly,
the transformation preserves the parabolic shape of both the defect radius-vector function and the
defect support function of the random polytope conv(Pλ), as described in [13, p. 53–54]. These
properties have been crucial in the proofs of the results contained in [13] on the convex hull conv(Pλ).
It turns out that T (λ) plays a similar role for the first n layers as long as we take a fixed n that
does not vary with λ. Indeed, at the limit, the convex hull is mapped by T (λ) to what we call the
parabolic hull of the limit rescaled process. In the same way it maps the convex hull peeling to the
analogue of the peeling procedure in the parabolic picture that we name parabolic hull peeling of
the limit rescaled process. We give more details below, after describing the effect of T (λ) on Pλ.
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Our scaling transformation maps the Poisson point process Pλ to a Poisson point process on
Wλ that we denote by P(λ). Its intensity has a density with respect to the Lebesgue measure given
by

(v, h) 7→
sind−2

(
λ−

1
d+1 ‖v‖

)
‖λ−

1
d+1 v‖d−2

(
1− λ−

2
d+1h

)
, (2.1)

see [13, p. 57] for the computation. As proved in [13, p. 71], this point process converges in
distribution to a homogeneous Poisson point process of intensity one on Rd−1×R+, that we denote
by P or P(∞).

Lemma 2.1. We have lim
λ→+∞

P(λ) = P in distribution.

Next we recall from [13] the effect of the rescaling on the spherical caps in the ball. This will
then allow us to deduce the images of the consecutive layers by the rescaling. Any spherical cap in
the unit ball of Rd can be written

cap(x0) := {x ∈ Bd : 〈x, x0

‖x0‖
〉 > ‖x0‖}, x0 ∈ Bd. (2.2)

One can see that cap(x0) is the cap orthogonal to x0 at distance ‖x0‖ of the origin. Let us write
(v0, h0) := T (λ)(x0). The cap cap(x0) is sent by T (λ) to a so-called downward quasi-paraboloid
[Π↓](λ)(v0, h0). Furthermore, the quasi-paraboloids [Π↓](λ)(v0, h0) converge to a paraboloid

[Π↓(v0, h0)](∞)(v0, h0) = Π↓(v0, h0) := {(v, h) ∈ Rd−1 × R+ : h < h0 −
‖v − v0‖2

2 }.

These results are made precise in Lemma 2.2 below, whose proof can be found in [13, p. 72-73] or
in [15, Lemma 3.1] up to a a small adaptation. Note that in this convergence result, with a slight
abuse, we use the notation ∂[Π↓](λ) (resp. ∂Π↓) for the function from Rd−1 to R+ whose graph is
the boundary of the set [Π↓](λ) (resp. Π↓).

Beforehand, we need to introduce useful notation for several types of cylinders that are used in
the rest of the paper. For any v ∈ Rd−1 and r > 0, Cv(r) denotes the vertical cylinder Bd−1(v, r)×
[0,∞) with the convention C(r) = C0(r). We also define the truncated cylinders C≥tv (r) := Cv(r)∩
{(v′, h′) ∈ Rd : h′ ≥ t}, C≤tv (r) := Cv(r) ∩ {(v′, h′) ∈ Rd : h′ ≤ t} and CIv (t) := Cv(r) ∩ {(v′, h′) ∈
Rd : h′ ∈ I} for any t > 0 and any interval I ⊂ R+.

Lemma 2.2. Let λ > 0 and x0 ∈ Bd. We write (v0, h0) = T (λ)(x0). Then we have

T (λ)(cap(x0)) = [Π↓](λ)(v0, h0) (2.3)

:= {(v, h) ∈Wλ : h < λ
2
d+1

(
1− 1− λ−

2
d+1h0

cos(eλ(v, v0))

)
}

where eλ(v, v0) := dSd−1

(
expd−1(λ−

1
d+1 v), expd−1(λ−

1
d+1 v0)

)
for v, v0 ∈ Rd−1.

Additionally, for any L ≥ 1, we have the following convergence result.

lim
λ→∞

∂[Π↓](λ)(v0, h0) ∩ C(v0,h0)(L) = ∂Π↓(v0, h0) ∩ C(v0,h0)(L) (2.4)

for the uniform convergence.
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Remark 2.3. As in [13], when λ ∈ (0,∞), we can introduce a dual set

[Π↑](λ)(v0, h0) := T (λ)(∂B(x0

2 ,
‖x0‖

2 )) (2.5)

= {(v, h) ∈Wλ : h > λ
2
d+1 (1− (1− λ−

2
d+1h0) cos(eλ(v, v0)))}

that we call the upward quasi-paraboloid with apex (v0, h0). Similarly, we define

[Π↑](∞)(v0, h0) = Π↑(v0, h0) := {(v, h) ∈ Rd−1 × R+ : h > h0 + ‖v − v0‖2

2 }. (2.6)

In particular, for any λ ∈ (0,∞] and any (v0, h0), (v1, h1) ∈Wλ,

((v1, h1) ∈ [Π↑](λ)(v0, h0))⇐⇒ ((v0, h0) ∈ [Π↓](λ)(v1, h1)).

This fact will be used on many occasions in the forthcoming proofs.

Recalling that for a locally finite point set X,

conv(X) =
⋃

H+ half-space
X∩H+=∅

(H+)c,

we are led by Lemma 2.2 to the following definition, that corresponds to the analogue of the convex
hull in the (quasi-)parabolic setting, where the role of the half-spaces is played by downward quasi-
paraboloids or paraboloids. For λ ∈ (0,∞] and a locally finite point set Y in Wλ, we write

Φ(λ)(Y ) :=
⋃

w∈Wλ

Y ∩[Π↓](λ)(w)=∅

[Π↓](λ)(w)c

that we call the quasi-parabolic hull of Y , or parabolic hull when λ =∞. We will generally write Φ
instead of Φ(∞) for sake of simplicity. Thanks to Lemma 2.2, we obtain that T (λ) maps the convex
hull of a point set to the quasi-parabolic hull of the image of this point set, i.e.

T (λ)(conv(X)) = Φ(λ)(T (λ)(X)),

provided that conv(X) contains the origin in its interior. In particular, when X = Pλ, Wendel’s
formula [37] shows that the event {0 ∈ int(conv(Pλ))} has a probability going to 1 exponentially
fast when λ→∞ and we implicitly condition on that event when working with T (λ).

We call extreme points of Y the points of Y ∩ ∂Φ(λ)
1 (Y ). They are naturally images by T (λ) of

the extreme points of the convex hull of [T (λ)]−1(Y ).
When λ→∞, the intersection ∂Φ(λ)(P(λ))∩C(R), R > 0, converges in distribution to ∂Φ(P)∩

C(R) where each quasi-parabolic hull is seen as a continuous function over C(R) and the set of
continuous functions on C(R) is endowed with the topology of the uniform convergence, see [13,
Theorem 4.1].

Let us now investigate the action of the transform T (λ) on the convex hull peeling procedure.
Quite naturally, it maps the convex hull peeling to a quasi-parabolic hull peeling that will converge
in some sense to a parabolic hull peeling. We define the hulls of the quasi-parabolic and parabolic
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hull peeling recursively with the following formula: for all n ≥ 2, λ ∈ (0,∞] and a locally finite
point set Y ⊂ Rd−1 × R+, we set

Φ(λ)
n (Y ) = Φ(λ)(Y ∩ int(Φ(λ)

n−1(Y ))).

When λ = ∞, we speak of parabolic hull peeling and we write Φn instead of Φ(∞)
n . In the same

way as for the the first layer of the convex hull peeling, the subsequent ones are mapped by T (λ)

to the corresponding parabolic hulls, i.e.

T (λ)(convn(X)) = Φ(λ)
n (T (λ)(X)), (2.7)

provided that the origin lies in the interior of convn(X). It is a direct consequence of [12, Theorem
1.2], see also (1.1), and [12, Equation (1.10) for x = 0] that the event {0 ∈ int(convn(Pλ))} has a
probability going to 1 exponentially fast when λ → ∞. Henceforth, when dealing with convn, we
implicitly condition on that particular event.

We call the sets ∂Φ(λ)
n (Y ) the layers of the quasi-parabolic or parabolic hull peeling of Y .

For any n ≥ 1, the set Φ(λ)
n (Y ) (resp. Φn(Y )) is the complement of a union of down quasi-

paraboloids (resp. paraboloids). As the quasi-paraboloids converge to paraboloids, see Lemma 2.2,
andWλ goes to Rd−1×R+ as λ goes to infinity, we can extend [13, Theorem 4.1] to the convergence
in distribution of the subsequent rescaled layers of the original convex peeling to the corresponding
layers of the parabolic peeling associated with the limit Poisson point process. As a side result,
we also obtain the convergence of the point process of points of P(λ) on the n-th layer. This is
summarized in Proposition 2.4 below.

Proposition 2.4. Let R > 0 and n ≥ 1. When λ→∞, we have that

∂Φ(λ)
n (P(λ)) L→ ∂Φn(P)

where the set of continuous functions over Rd−1 is endowed with the topology of the uniform con-
vergence on every compact set. Moreover,

P(λ) ∩ ∂Φ(λ)
n (P(λ)) L→ P ∩ ∂Φn(P).

In other words, Proposition 2.4 explains to what extent the parabolic hull peeling is the rescaled
limiting model of the convex hull peeling in the ball. Since Proposition 2.4 is a natural analogue of
the results stated and proved in [13, Theorem 4.1] and [15, Theorem 1.1] for the (quasi)-parabolic
hull process, its proof is omitted. Let us note that when λ =∞, the parabolic hull peeling of P, as
seen in Figure 2, is also a crucial tool of [12] under the name of semiconvex peeling.

2.2 Properties of the rescaled layers
For any w ∈ Rd−1 × R+, we introduce the number

`(λ)(w, Y ) = n such that w ∈ ∂Φ(λ)
n (Y ∪ {w}). (2.8)

In particular, for any x ∈ Bd, `(λ)(T (λ)(x), T (λ)(X)) is the number of the layer of x in the initial
convex hull peeling of X ∪ {x}. We now aim at proving an explicit criterion for determining
`(λ)(w, Y ), see Lemma 2.5, and the monotonicity of `(λ)(w, Y ) with respect to Y , see Lemma 2.6.
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∂Φ1(P)

∂Φ2(P)
∂Φ3(P)

∂Φ4(P)

∂Φ5(P)

Figure 2 – First layers of a parabolic hull peeling, with the interior of Φ5(P) in pink.

Both of these properties could be stated for the initial convex hull peeling but we will only use the
rescaled versions below.

Let us recall, see e.g. [13, pages 66-67], that a point w in Rd−1 × R+ is extreme if and only if
there exists (v1, h1) ∈ ∂[Π↑](λ)(w) such that [Π↓](λ)(v1, h1) ∩ Y = ∅.

Lemma 2.5 provides a geometric interpretation of the function `(λ) that extends the result above
and that we will use frequently – and sometimes implicitly – in the rest of the paper, see Figure 3
for an illustration of this lemma.

Lemma 2.5. Let Y be a locally finite subset of Rd−1 × R+, w ∈ Y , λ ∈ (0,∞] and n ≥ 1. Then
we have the two following equivalences.
(i) (`(λ)(w, Y ) ≥ n) ⇐⇒ (∀ (v1, h1) ∈ ∂[Π↑](λ)(w) : Y ∩ [Π↓](λ)(v1, h1) 6⊆ ∪n−2

i=1 ∂[Φi](λ)(Y )).

(ii) (`(λ)(w, Y ) ≤ n) ⇐⇒ (∃ (v1, h1) ∈ ∂[Π↑](λ)(w) : Y ∩ [Π↓](λ)(v1, h1) ⊆ ∪n−1
i=1 ∂[Φi](λ)(Y )).

Proof. (i) Let us assume that `(λ)(w, Y ) ≥ n and take (v1, h1) ∈ ∂[Π↑](λ)(w). If we had [Π↓](λ)(v1, h1)∩
Y ⊆ ∪n−2

i=1 ∂[Φi](λ)(Y ), this quasi-paraboloid would not intersect Y after removing the first (n− 2)
layers, meaning that w would be at most of layer (n− 1) so the first implication holds.

Conversely, let us assume that [Π↓](λ)(v1, h1) ∩ Y 6⊆ ∪n−2
i=1 ∂[Φi](λ)(Y ). Then after removing the

first (n − 2) layers, any down quasi-paraboloid whose boundary contains w has to meet Y . This
implies that w is not extreme after removing the first (n− 2) layers and thus `(λ)(w, Y ) ≥ n.

(ii) If `(λ)(w, Y ) = m ≤ n, w is extreme when we remove the first (m − 1) layers. Thus let
(v1, h1) ∈ ∂[Π↑](λ)(w) be such that [Π↓](λ)(v1, h1) does not contain any point of Y after removing
the first (m− 1) layers. This implies that

[Π↓](λ)(v1, h1) ∩ Y ⊆ ∪m−1
i=1 ∂[Φi](λ)(Y ) ⊆ ∪n−1

i=1 ∂[Φi](λ)(Y ).

Conversely, if we assume that

∃ (v1, h1) ∈ ∂[Π↑](λ)(w) : [Π↓](λ)(v1, h1) ∩ Y ⊆ ∪n−1
i=1 ∂[Φi](λ)(Y ),

10



w

(v1, h1)

Π↓(v1, h1)

Π↑(w)

Figure 3 – Illustration of the criteria (i) and (ii) of Lemma 2.5 in the case λ =∞ and l(∞)(w, Y ) =
3. As in (ii), the paraboloid Π↓(v1, h1) contains w on its boundary and only contains points on
layers at most 2. As in (i), any translate of Π↓(v1, h1) containing w in its boundary (i.e. with
(v1, h1) ∈ ∂Π↑(w)) contains at least one point of layer at least 2.

either w belongs to the first (n− 1) layers or it is extreme once the first (n− 1) layers are removed.
Thus `(λ)(w, Y ) ≤ n.

Lemma 2.6 below, which is of frequent use in our proofs, shows that the variables `(λ)(w,X)
are increasing with respect to the set X. It slightly rephrases [19, Lemma 3.1] in the context of
the parabolic hull peeling and [12, Lemma 2.1]. For sake of completeness, we include a short proof
below.

Lemma 2.6. For λ ∈ (0,∞], if X ⊂ Y ⊂Wλ, we have for every w ∈Wλ, `(λ)(w,X) ≤ `(λ)(w, Y ).

Proof. We prove the result by induction on n = `(λ)(w, Y ). When n = 1, w is extreme for the point
set Y ∪ {w} so is also extreme for the smaller point set X ∪ {w}. When n > 1, by Lemma 2.5
(ii), w lies on the boundary of a down quasi-paraboloid such that each point w′ of Y in its interior
satisfies `(λ)(w′, Y ∪ {w}) ≤ (n − 1). When w′ ∈ X, the induction hypothesis applied to w′ and
the point sets X ∪ {w} and Y ∪ {w} shows that `(λ)(w′, X ∪ {w}) ≤ `(λ)(w′, Y ∪ {w}) ≤ (n − 1).
Consequently, using again Lemma 2.5 (ii), we obtain that `(λ)(w,X) ≤ n. This completes the proof.
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Figure 4 – The effect of adding a (red) point to the parabolic hull peeling. The red dashed lines
are the changes applied to the layers.

Remark 2.7. In fact, when Y \X is finite, we can show by arguments similar to the proof of [19,
Lemma 3.1] that `(λ)(w, Y ) ≤ `(λ)(w,X) + #(Y \X) where #(·) denotes the cardinality, see Figure
4.

2.3 Scores and correlation functions
In this subsection we associate to each point of Bd (resp. Wλ) a random variable depending on

that point and on the Poisson point process which we call score. We start by defining the score
of a point in the initial convex hull peeling before rescaling, i.e. for every x ∈ Bd, n ≥ 1 and
k ∈ {0, . . . , d− 1}, we introduce the r.v.

ξn,k(x,X) :=
{ 1

k+1#Fn,k(x,X) if x ∈ ∂convn(X ∪ {x})
0 otherwise

where Fn,k(x,X) is the set of all k-faces containing x of ∂convn(X∪{x}). The factor 1
k+1 is needed

to take into account the fact that the faces are counted multiple times since a k-face contains a.s.
(k + 1) points of Pλ. In particular, we get the identity

Nn,k,λ =
∑
x∈Pλ

ξn,k(x,Pλ). (2.9)

We now extend this notion of score to the rescaled model. Let λ ∈ (0,∞], Y be a locally finite
subset of Wλ, w ∈Wλ, n ≥ 1 and k ∈ {0, . . . , d− 1}. We denote by F (λ)

n,k(w, Y ) the set of k-faces of
∂Φ(λ)

n (Y ∪{w}) containing w, i.e. the image by T (λ) of the set of k-faces of convn([T (λ)]−1(Y ∪{w}))
containing [T (λ)]−1(w) when λ <∞. When λ =∞, F (λ)

n,k(w, Y ) is the set of k-dimensional parabolic
faces of Φ(λ)

n,k(Y ∪ {w}), as defined in [13, p. 65–66], containing w. For any fixed λ ∈ (0,∞], we

12



define the score

ξ
(λ)
n,k(w, Y ) :=

{
1
k+1#F (λ)

n,k(w, Y ) if w ∈ ∂Φ(λ)
n (Y ∪ {w})

0 otherwise
. (2.10)

We deduce from (2.10) and (2.7) that for every w ∈Wλ,

ξ
(λ)
n,k(w,P(λ)) = ξn,k

(
[T (λ)]−1(w),Pλ

)
. (2.11)

Note that the r.v. ξ(λ)
n,k are calibrated such that

∑
w∈P(λ) ξ

(λ)
n,k(w,P(λ)) is a.s. the total number of

k-faces of ∂Φ(λ)
n (P(λ)).

We then introduce the two-point correlation function which is crucial for deriving the limiting
variance. For any λ ∈ (0,∞] let us write

c
(λ)
n,k((0, h0), (v1, h1)) := E[ξ(λ)

n,k((0, h0),P(λ) ∪ {(v1, h1)})ξ(λ)
n,k((v1, h1),P(λ) ∪ {(0, h0)})]

− E[ξ(λ)
n,k((0, h0),P(λ))]E[ξ(λ)

n,k((v1, h1),P(λ))]. (2.12)

We conclude by giving a more precise statement of Theorem 1.1, as we have now introduced
every notation involved in the limiting constants.

Theorem 2.8. For any n ≥ 1 and k ∈ {0, . . . , d− 1} we have

lim
λ→∞

λ−
d−1
d+1 E[Nn,k,λ] = Vold−1(Sd−1)

∫ +∞

0
E[ξ(∞)

n,k ((0, h),P)]dh ∈ (0,∞).

Theorem 2.9. For any n ≥ 1 and k ∈ {0, . . . , d− 1} we have

lim
λ→∞

λ−
d−1
d+1 Var[Nn,k,λ] = Vold−1(Sd−1) (I1 + I2) ∈ (0,∞)

where
I1 :=

∫ ∞
0

E[ξ(∞)
n,k ((0, h),P)2]dh (2.13)

and
I2 :=

∫ +∞

0

∫ +∞

0

∫
Rd−1

c
(∞)
n,k ((0, h0), (v1, h1))dv1dh0dh1. (2.14)

We restate in a similar way Theorem 1.2 for the intrinsic volumes, using the definitions of ξ(∞)
V,n,k

and c(∞)
V,n,k introduced at (5.14) and (5.15) respectively.

Theorem 2.10. For any n ≥ 1 and k ∈ {1, . . . , d} we have

lim
λ→+∞

λ
2
d+1 E[Vn,k,λ] = Vold−1(Sd−1)

∫ +∞

0
E[ξ(∞)

V,n,k((0, h),P)]dh ∈ (0,∞).

Theorem 2.11. For any n ≥ 1 and k ∈ {1, . . . , d} we have

lim
λ→+∞

λ
d+3
d+1 Var[Vn,k,λ] = Vold−1(Sd−1) (I1 + I2) ∈ (0,∞)
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where
I1 :=

∫ ∞
0

E[ξ(∞)
V,n,k((0, h),P)2]dh

and
I2 :=

∫ +∞

0

∫ +∞

0

∫
Rd−1

c
(∞)
V,n,k((0, h0), (v1, h1))dv1dh0dh1.

3 Stabilization
The aim of this section is to show stabilization results for the considered scores. This means

roughly that the score calculated at one particular fixed point requires the knowledge of the Pois-
son points outside of a lateral neighborhood of that fixed point with an exponentially decreasing
probability. This tool is essential to get moment bounds in Lemma 4.1, then the convergence of the
mean of one score and of the covariance of the scores and ultimately our main results, i.e Theorems
1.1 and 1.2.

3.1 Local scores and stabilization radius
First we extend the notion of score to a local score in an angular sector around a point in the

following way. For x ∈ Bd and r > 0, we introduce S(x, r) = {y ∈ Rd : dSd−1(x/‖x‖, y/‖y‖) ≤ r}
where dSd−1 is the geodesic distance along Sd−1 and

ξn,k,[r](x,Pλ) := ξn,k(x,Pλ ∩ S(x, r)).

We define the stabilization radius in the initial model as

Rn,k(x,Pλ) := inf{R > 0 : ξn,k(x,Pλ) = ξn,k,[r](x,Pλ) ∀r ≥ R}.

In particular, thanks to the rotation invariance of Pλ, we get the identity in law

Rn,k(x,Pλ) (d)= Rn,k(‖x‖ed,Pλ). (3.1)

We formally introduce the stabilization radius in the rescaled model as

R
(λ)
n,k(w,P(λ)) := Rn,k([T (λ)]−1(w),Pλ). (3.2)

Combining (3.2) with (3.1), we obtain the invariance under horizontal translation of R(λ)
n,k, namely

for any (v, h) ∈Wλ,
R

(λ)
n,k((v, h),P(λ)) (d)= R

(λ)
n,k((0, h),P(λ)). (3.3)

Since the image by T (λ) of S(ed, r) for r ∈ (0, π) is a cylinder, we also extend the notion of score
in the rescaled picture to a local score in a cylinder of radius r around a point in the following way.
For any r > 0, λ ∈ (0,∞] and w = (v, h) ∈Wλ we write

ξ
(λ)
n,k,[r](w,P

(λ)) := ξ
(λ)
n,k(w,P(λ) ∩ Cv(r)). (3.4)

When w = (0, h), the following equality provides a convenient expression of the stabilization radius,
which is the one we use most of the time:

R
(λ)
n,k((0, h),P(λ)) = inf{R > 0 : ξ

(λ)
n,k((0, h),P(λ)) = ξ

(λ)
n,k,[r]((0, h),P(λ)) ∀r ≥ R}.
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We provide estimates for the distribution tail of R(λ)
n,0(w,P(λ)) in Section 3.2 and of R(λ)

n,k(w,P(λ))
in Section 3.3.

3.2 Stabilization for points
A prerequisite for Sections 3.2 and 3.3 is the following geometric lemma that we will use exten-

sively when showing the stabilization property. Though standard, we include its proof below for
the reader’s convenience.

Lemma 3.1. Let λ ∈ (0,∞] and w0, w1 ∈ H such that ∂[Π↓](λ)(w1) goes through w0. Then there
exists a half-space P+ delimited by a hyperplane P going through w0 with direction containing
(0, 0, . . . , 0, 1) such that [Π↓](λ)(w0) ∩ P+ ⊆ [Π↓](λ)(w1).

Proof. For finite λ, this is a direct consequence of the following fact in the non-rescaled model: for
any point x0 = red, r ∈ (0, 1) and any point x1 ∈ ∂B(x0

2 ,
‖x0‖

2 ), the set cap(x1) as defined in (2.2)
contains at least half of cap(x0). Using (2.3) and (2.5), we deduce the required result in the rescaled
model.

For λ = ∞, we proceed along the following lines. An orthogonal transformation allows us to
assume that w0 = (0, 0, . . . , 0, h0) for some h0 > 0 and w1 = (a, 0, . . . , 0, h1) with a, h1 > 0. Since
∂Π↓(w1) goes through w0, we must have a =

√
2(h1 − h0). Let us show that Π↓(w0) ∩ {(v, h) :

(v)1 > 0} ⊆ Π↓(w1) where (v)1, . . . , (v)d−1 denote the consecutive coordinates of v. The equations
of both paraboloids are

Π↓(w0) :
(
h < h0 −

1
2

d−1∑
i=1

(v)2
i

)
and Π↓(w1) :

(
h < h1 −

1
2
(
((v)1 − a)2 +

d−1∑
i=2

(v)2
i

))
.

For (v, h) ∈ Π↓(w0) ∩ {(v, h) : (v)1 > 0}, using a =
√

2(h1 − h), we get

h < h0 −
1
2

(
((v)1 − a)2 +

d−1∑
i=2

(v)2
i

)
+ 1

2
√

2(h1 − h0)
2
− a(v)1

< h1 −
1
2

(
((v)1 − a)2 +

d−1∑
i=2

(v)2
i

)
.

This completes the proof.

In the next lemma we show that the maximal height of the Poisson points on the n-th layer
∂Φ(λ)

n of the quasi-parabolic hull peeling inside a cylinder is bounded with a probability going to
1 exponentially fast with respect to the bound. This will be essential for proving the stabiliza-
tion result in Proposition 3.3 and will also be useful when proving Lemma 3.5 which provides a
stabilization in height.

Here and in the sequel we denote by c, c1, c2... generic positive constants that only depend on
n, k and d and which may change from line to line.

Lemma 3.2. For all n ≥ 1, there exist λ0, c1, c2 > 0 such that for all t ≥ 0, λ ∈ [λ0,∞] and
1 ≤ r < πλ

1
d+1 , we have

P
(
∃(v, h) ∈ P(λ) ∩ ∂Φ(λ)

n

(
P(λ) ∩ C(r)

)
∩ C(r/2n) with h ≥ t

)
≤ c1rd−1e−c2t(r∧

√
t)d−1
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and

P
(
∃(v, h) ∈ P(λ) ∩ ∂Φ(λ)

n

(
P(λ)

)
∩ C(r/2n) with h ≥ t

)
≤ c1rd−1e−c2t(r∧

√
t)d−1

.

Proof. We only prove the first inequality as the method for getting the second one is very similar.
We begin with the proof for λ = ∞ as the case λ < ∞ is a bit more technical. We are going to
show it by induction on n. We first prove the induction step as it contains the main ideas. Then
we describe what needs to be changed to prove the induction step for λ <∞ and finally we explain
the slight modifications that are needed to prove the base case.

Proof of the induction step for λ = ∞. We assume that the result holds for all l < n with a fixed
n > 1 and we show that it holds for n. Let w = (v, h) ∈ C(r/2n) with h ≥ t. Our first step is to
show that the event

{w ∈ ∂Φn ((P ∪ {w}) ∩ C(r))} (3.5)

occurs with probability smaller than c1 exp(−c2h(r ∧
√
h)d−1). Here we add w to the point process

because we plan to use Mecke’s formula later to deal with a union over all w.
Let (v1, h1) ∈ Rd−1×R+ such that w ∈ ∂Π↓(v1, h1) and Π↓(v1, h1) only contains points of layer

at most (n−1) for C(r). Lemma 2.5 (ii) guarantees that such a (v1, h1) exists. By Lemma 3.1, this
downward paraboloid contains at least half of Π↓(w). Consequently, denoting by A1, . . . , A2d−1 the
intersections of Π↓(w) with the product of an orthant of Rd−1 translated by v with R+, we have
Vold(Ai∩C≥h/2(r/2n−1)) = 1

2d−1 Vold(Π↓(w)∩C≥h/2(r/2n−1)) and Π↓(v1, h1) contains at least one
of the Ai.

Let us write
Bi,n(h, r) := Ai ∩ {(v′, h′) : h′ ≥ h/2} ∩ C(r/2n−1). (3.6)

From the preceding reasoning we deduce that

{w ∈ ∂Φn ((P ∪ {w}) ∩ C(r))} ⊆ {∃i : P ∩Bi,n(h, r) ⊆ [Φn((P ∪ {w}) ∩ C(r))]c}.

For fixed i, Bi,n(h, r) is either empty, which happens with probability smaller than c1 exp(−c2h(r∧√
h)d−1) or it contains a point at height larger than h/2 on a layer at most (n− 1), which happens

with probability smaller than c1 exp(−c2h(r ∧
√
h)d−1) by the induction hypothesis. Consequently

we have
P({w ∈ ∂Φn ((P ∪ {w}) ∩ C(r))) ≤ c1 exp(−c2h(r ∧

√
h)d−1). (3.7)

We can write

P (∃(v, h) ∈ P ∩ ∂Φn(P ∩ C(r)) ∩ C(r/2n) with h ≥ t)

≤ E

 ∑
w∈P∩C≥t(r/2n)

1w∈∂Φn(P∩C(r))

.

16



We combine this with Mecke’s formula and (3.7) to get

P (∃(v, h) ∈ P ∩ ∂Φn(P ∩ C(r)) ∩ C(r/2n) with h ≥ t)

≤
∫
‖v‖≤r/2n

∫
h∈]t,+∞[

P ((v, h) ∈ ∂Φn((P ∪ {(v, h)}) ∩ C(r))) dhdv

≤
∫
‖v‖≤r/2n

∫
h∈]t,+∞[

c1 exp(−c2h(r ∧
√
h)d−1)dhdv

≤ c1rd−1 exp(−c2t(r ∧
√
t)d−1).

This proves the induction step.

Proof of the induction step for λ <∞. Let us check that the proof above still holds. The only dif-
ference here is that the intensity of the process is no longer constant. However let us recall that this
intensity has a density given by (2.1) so it is uniformly bounded from below for any ‖v‖ ≤ 3

4λ
1
d+1π

and h ≤ 3
4λ

2
d+1 by a constant that does not depend on λ and is upper bounded by 1. The same

proof as in the case λ =∞ shows that

{w ∈ ∂Φ(λ)
n ((P(λ) ∪ {w}) ∩ C(r))} ⊆ {∃i : P(λ) ∩Bi,n(h, r) ⊆ [Φ(λ)

n ((P(λ) ∪ {w}) ∩ C(r))]c}.

with Bi,n(h, r) introduced at (3.6). If for a fixed i, Bi,n(h, r) is empty then in particular the
set Bi,n(h, r) ∩ {(v′, h′) : 1

2h ≤ h′ ≤ 3
4h} ∩ C(r/2n−1) is also empty and included in the region

{(v′, h′) : ‖v′‖ ≤ 3
4λ

1
d=1π and h′ ≤ 3

4λ
2
d+1 } on which the density at (2.1) is bounded from below by

a constant. Consequently,

P(P(λ) ∩Bi,n(h, r) = ∅) ≤ e−c1Vold(Bi,n(h,r)) ≤ e−c2h(r∧
√
h)d−1

.

The use of the induction hypothesis remains unchanged so we still have (3.7) in the case λ < ∞.
To get the result we then follow the same steps as before except that we upper-bound the intensity
density by 1 after the use of Mecke’s formula.

Proof of the base case n = 1 for both λ =∞ and λ <∞. We define for every 1 ≤ i ≤ 2d−1

B̃i,1(h, r) = Ai ∩ {(v′, h′) : 1
2h ≤ h

′ ≤ 3
4h} ∩ C(3r/4).

which guarantees that the intensity measure of B̃i,1(h, r) is lower bounded by its Lebesgue measure
up to a multiplicative constant. Using the inclusion

{w ∈ ∂Φ1

(
(P(λ) ∪ {w}) ∩ C(r))

}
⊆ {∃i : P(λ) ∩ B̃i,1(h, r) = ∅},

we get an analogue of (3.7) which, combined with Mecke’s formula, proves the base case.
This completes the proof of Lemma 3.2.

We are now ready to prove a stabilization result for the 0−faces, i.e. the extreme points of the
n−th layer. It is a crucial step towards a general stabilization for k−faces.
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Proposition 3.3. For all n ≥ 1, there exist λ0, c1, c2 > 0 such that for any h0 > 0, λ ∈ [λ0,+∞]
and 1 ≤ r < πλ

1
d+1 we have

P
(
R

(λ)
n,0(0, h0) ≥ r

)
≤ c1 exp

(
−c2rd+1) . (3.8)

Proof. We give a detailed proof for the case λ = ∞ and briefly describe at the end how to adapt
the proof to make it work for finite λ.

We show this result by induction. The case n = 1 corresponds to [13, Lemma 6.1]. We now fix
n ≥ 2 and assume that (3.8) is verified for all m < n. Let us show (3.8) for n.

We first notice that

{R(λ)
n,0(0, h0) ≥ r} =

⋃
s≥r

{ξ(∞)
n,0 ((0, h0),P ∩ C(s)) 6= ξ

(∞)
n,0 ((0, h0),P)}

Let us introduce

E1 :=
⋃
s≥r

⋃
l<n

{(0, h0) ∈ ∂Φl(P ∩ C(s)) ∩ ∂Φn(P)},

E2 :=
⋃
s≥r

⋃
l>n

{(0, h0) ∈ ∂Φn(P ∩ C(s)) ∩ ∂Φl(P)}.

Since {R(λ)
n,0(0, h0) ≥ r} = E1 ∪ E2, it is enough to prove that for any r ≥ 1,

P(E1) ≤ c1 exp(−c2rd+1) (3.9)

and
P(E2) ≤ c1 exp(−c2rd+1). (3.10)

Decomposition of E1. The strategy is the following: we plan to select a down-paraboloid which
contains (0, h0) on its boundary and a point w in its interior to which we can apply the induction
hypothesis, recalling (3.3).

To do so, we introduce the two events

F1 := { ∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≤ r2/32 :
P ∩ C(r) ∩Π↓(v1, h1) ⊆ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)},

F2 := { ∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≥ r2/32 :
P ∩ C(r) ∩Π↓(v1, h1) ⊆ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)},

see Figure 5.
When n = 2, we replace the inclusion P∩C(r)∩Π↓(v1, h1) ⊆ [Φn−1(P∩C(r))]c in the definition

of F1 and F2 above by P ∩ C(r) ∩Π↓(v1, h1) = ∅.
In particular, E1 ⊆ F1 ∪ F2. Indeed if one of the events of the union in the definition of

E1 occurs for fixed l < n and s ≥ r, there exists (v1, h1) ∈ ∂Π↑(0, h0) such that for every w ∈
P∩C(r)∩Π↓(v1, h1), `(∞)(w,P∩C(s)) ≤ (l−1). Lemma 2.6 then implies that `(∞)(w,P∩C(r)) ≤
(l − 1) ≤ (n− 2) for any such w.

Consequently, it suffices to upper bound P(F1) and P(F2) which we do with two different strate-
gies. In the case of F1, there is a downward paraboloid Π↓(v1, h1) which is low enough to be
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h0

r2

32

(v1, h1)

r−r

Figure 5 – Example of a situation where event F2 from Proposition 3.3 occurs when (0, h0) is on
layer 3 for the peeling of P ∩ C(r).

contained in a cylinder smaller than C(r). This implies that we can apply the induction hypothesis
to a well chosen point in Π↓(v1, h1). When on F2, the downward paraboloid is high enough so that
there is a high point w with `(∞)(w,P ∩C(r)) ≤ n and we deduce from Lemma 3.2 that it happens
with exponentially small probability.

Upper bound for P(F1). Let us fix (v1, h1) with h1 ≤ r2/32 as in the event F1. Using that
(v1, h1) ∈ ∂Π↑(0, h0), we get

‖v1‖ =
√

2(h1 − h0) ≤
√

2h1 = r/4. (3.11)

Furthermore if we take (v2, h2) ∈ Π↓(v1, h1), the norm of v2 is smaller than the norm of v1 plus
half of the width of the paraboloid Π↓(v1, h1), so

‖v2‖ ≤ ‖v1‖+ ‖v2 − v1‖ ≤
r

4 +
√

2h1 ≤ r/2. (3.12)

This implies that Π↓(v1, h1) ⊆ C(r/2). In particular, when n = 2, we get that (0, h0) is an extremal
point of P ∪{(0, h0)} and subsequently that F1 = ∅. In the case n ≥ 2, we proceed in the following
way. Since `(∞)((0, h0),P) = n, we can choose a point w ∈ Π↓(v1, h1) such that `(∞)(w,P) ≥ (n−1).
Then because we are on the event F1, we also have `(∞)(w,P ∩ C(r)) ≤ (n − 2). By Lemma 2.6,
this implies that `(∞)(w,P ∩ Cw(r/2)) ≤ (n− 2), which means that

∃m ≤ (n− 2) : R(∞)
m,0 (w) ≥ r/2. (3.13)

Using the induction hypothesis

P(R(∞)
m,0 (w) ≥ r/2) ≤ c1 exp(−c2rd+1).

19



Since w belongs to P ∩ C≤ r
2

32 (r/2), we rewrite

P (F1) ≤ P
( n−2⋃
m=1

⋃
w∈P∩C≤

r2
32 ( r2 )

{R(∞)
m,0 (w,P) ≥ r

2}
)
≤ E

[ n−2∑
m=1

∑
w∈P∩C≤

r2
32 ( r2 )

1{R(∞)
m,0 (w,P)≥ r2 }

]
.

Now we use Mecke’s formula to obtain

P (F1) ≤
∑

m≤n−2

∫
C≤r2/32(r/2)

P
(
R

(∞)
m,0 (w,P) ≥ r/2

)
dw

≤ c1 exp(−c2rd+1). (3.14)

Decomposition of F2. We rewrite F2 = G1 ∪G2 where

G1 := {∃(v1, h1), h1 ≥ r2/32, ‖v1‖ ≤ r/6 :
P ∩ C(r) ∩Π↓(v1, h1) ⊆ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)}.

G2 := {∃(v1, h1), h1 ≥ r2/32, ‖v1‖ ≥ r/6 :
P ∩ C(r) ∩Π↓(v1, h1) ⊆ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)}.

Again, when n = 2, we replace the inclusion P ∩ C(r) ∩ Π↓(v1, h1) ⊆ [Φn−1(P ∩ C(r))]c in the
definition of F1 and F2 above by P ∩ C(r) ∩Π↓(v1, h1) = ∅.

Figure 6 – Illustration of the geometric constructions leading to the upper-bounds of P(G1) (left)
and P(G2) (right)

Upper bound for P(G1). We fix (v1, h1) with ‖v1‖ ≤ r/6 and h1 ≥ r2/32 as in the event G1. In
particular, we get

h0 = h1 −
‖v1‖2

2 ≥ 5
288r

2. (3.15)

By Lemma 3.1, the down-paraboloid Π↓(v1, h1) contains half of Π↓(0, h0) ∩ C≥
h0
2 ( r

2n ), see Figure
6 (left). As in the proof of Lemma 3.2, we can find a deterministic subset Ai of Π↓(0, h0) for some
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1 ≤ i ≤ 2d−1 such that Ai ⊆ Π↓(v1, h1) and

Vold
(
Ai ∩ C≥

h0
2

( r
2n
))

= 1
2d−1Vold

(
Π↓(0, h0) ∩ C≥

h0
2

( r
2n
))

. (3.16)

The set Ai ∩ C≥
h0
2 ( r

2n ) is empty with probability bounded by exp(−crd+1) thanks to (3.15) and
(3.16). If Ai ∩ C≥

h0
2 ( r

2n ) is not empty, which happens only when n ≥ 3, it contains a point w at
height at least h0

2 ≥ cr2 with `(∞)(w,P ∩ C(r)) ≤ (n − 2). Using Lemma 3.2 this happens with
probability smaller than c1 exp(−c2rd+1).

A union bound on the finite number of sets A1, . . . A2d−1 yields

P(G1) ≤ c1 exp(−c2rd+1). (3.17)

Upper bound for P(G2). We fix (v1, h1) with ‖v1‖ ≥ r/6 and h1 ≥ r2/32 as in the event G2.
Let P be the vertical plane containing the origin and (v1, h1) and let (v2, h2) be the highest in-
tersection point between Π↓(v1, h1) and ∂C(r/2n+1) in P . Using ‖v1‖ =

√
2(h1 − h0), we get

h2 = h1 −
1
2(‖v1‖ −

r

2n+1 )2 = h0 + r

2n+1

√
2(h1 − h0)− r2

2(2n+1)2 ≥ cr
2. (3.18)

We claim that Π↓(v1, h1)∩C(h2
2 ,h2)( r

2n ) contains a deterministic cylinder C0 with width proportional
to r and height proportional to h2. Indeed, for n ≥ 3, the cylinder inscribed in C( r

2n ) \C( r
2n+1 ) of

radius r
2n+2 between heights h2

2 and h2 and with axis included in P as in Figure 6 (right) is fully
included in Π↓(v1, h1), thanks to the inequality ‖v1‖ ≥ r

6 ≥
r

2n . For n = 2, the inequality is not
satisfied and that is why we take a thinner cylinder inscribed in C( r6 ) \ C( r8 ) instead.

The cylinder C0 constructed above is empty with probability smaller than exp(−ch2r
d−1). If

C0 is not empty, which happens only when n ≥ 3, it contains a point w of height at least h2
2 with

`(∞)(w,P ∩ C(r)) ≤ (n − 2). By Lemma 3.2 combined with (3.18), this happens with probability
smaller than c1rd−1 exp(−c2h2r

d−1).
Finally, discretizing ∂Π↑(0, h0) for

h1 ≥ h0 + 1
2

(
r

6

)2
, (3.19)

we get

P(G2) ≤ c1
∫ ∞
h0+r2/72

(h1 − h0)(d−2)/2rd−1e
−c2(h0+ r

2n+1

√
2(h1−h0)− r2

2(2n+1)2 )rd−1

dh1

≤ c1
∫ ∞
h0+r2/72

(h1 − h0)(d−2)/2rd−1e−c2
r

2n+2

√
2(h1−h0)rd−1

dh1

≤ c1 exp(−c2rd+1). (3.20)

Conclusion for λ =∞. Using the inclusion E1 ⊂ F1 ∪G1 ∪G2 and the estimates for P(F1), P(G1)
and P(G2) obtained above, we deduce (3.9). The estimate (3.10) is obtained in a very similar
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fashion, where n plays the role of l, by considering the decomposition E2 ⊂ F ′1 ∪ F ′2 where

F ′1 = {∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≤ r2/32 :
P ∩ C(r) ∩Π↓(v1, h1) ⊆ [Φn(P ∩ C(r))]c} ∩ {∃l > n, (0, h0) ∈ ∂Φl(P)},

F ′2 = {∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≥ r2/32 :
P ∩ C(r) ∩Π↓(v1, h1) ⊆ [Φn(P ∩ C(r))]c} ∩ {∃l > n, (0, h0) ∈ ∂Φl(P)}.

For the sake of brevity, the proof of (3.10) is omitted. Combining (3.9) and (3.10), we complete
the proof of Proposition 3.3 when λ =∞.

Case λ <∞. We recall the two necessary updates for finite λ.
1. Density. The density of the intensity measure of P(λ) is lower bounded by a positive constant

in a compact subset of Wλ only.
2. Quasi-paraboloids. The calculations that have been done with paraboloids are valid for quasi-

paraboloids up to a small error.
The second update above implies that for λ large enough, (3.11) and (3.12) can be replaced by
‖v1‖ ≤ r

3 and ‖v2‖ ≤ 2r
3 respectively. The assertion (3.13) is in turn replaced by R(λ)

m,0(w) ≥ r/3
for some m ≤ (n− 2) and we proceed with the same reasoning as before to get (3.14).

Regarding the upper bounds of P(G1) and P(G2), we make the following modifications.
— Because of the second update, the inequalities (3.15), (3.18) and (3.19) deduced from the

actual equation of a paraboloid become h0 ≥ cr2, h2 ≥ cr2 and h1 ≥ h0 + cr2 for λ large
enough thanks to (2.4). Moreover, the second equality at (3.18) stays the same up to a
multiplicative constant.

— In view of the first update, we replace Ai ∩ C≥
h0
2 ( r

2n ) by Ai ∩ C(h0
2 ,

3h0
4 )( r

2n ) in (3.16) and
in the rest of the proof of the upper bound for P(G1).
Moreover, the deterministic cylinder C0 constructed in the proof of the upper bound for
P(G2) on page 21 is replaced by a cylinder included in C(h2

2 ,
3h2

4 )( r
2n ) and with radius r

2n+3 ,
say.

We then obtain (3.17) and (3.20) and conclude as in the case λ =∞.

Proposition 3.3 is a general stabilization result for the score at one fixed point and this stabiliza-
tion is lateral, meaning that the point process is intersected with a cylinder. Lemma 3.4 below is
a complementary stabilization result in a cylinder and the stabilization there is in height, meaning
that the point process is intersected with a horizontal strip. Combining Lemma 3.4 with Proposi-
tion 3.3, we can deduce a general stabilization result both in width and height. The stabilization
in height is required to restrict the peeling to a cylinder bounded in height later on and use the
continuous mapping theorem, see Lemma 4.2. This will ultimately imply in particular a conver-
gence result for the mean of the functional ξ(λ)

n,k, see Proposition 4.3. An extra refinement contained
in Lemma 3.4 is that the stabilization in height is proved to be uniform for all the points inside a
small cylinder. This will be needed for getting the stabilization in height of the k-face score, see
Lemma 3.7.
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Lemma 3.4. For all n ≥ 1, there exist λ0, c1, c2 > 0 such that for all λ ∈ [λ0,∞] and 1 ≤ r <

πλ
1
d+1 , we have

P
(
∃w ∈ P(λ) ∩ C≤lnr

2
( r

2n+1

)
: ξ(λ)
n,0(w,P(λ) ∩ C(r)) 6= ξ

(λ)
n,0(w,P(λ) ∩ C≤lnr

2
(r))

)
≤ c1 exp(−c2rd+1)

with ln = 1
22n+7 .

Proof. As in the previous proofs, we proceed in the case λ = ∞ and explain at the end how to
adapt the arguments in the case λ <∞. For fixed n, we prove by induction on m that for all m ≤ n
there exists c1, c2 > 0 such that for all r ≥ 1 we have

P
(
∃w ∈ P ∩ C≤lnr

2
( r

2m+1

)
: ξ(∞)
m,0 (w,P ∩ C(r)) 6= ξ

(∞)
m,0 (w,P ∩ C≤lnr

2
(r)
)

≤ c1 exp(−c2rd+1). (3.21)

Lemma 3.4 is then derived from (3.21) by taking m = n.

Proof of the base case m = 1 for λ =∞. Let w ∈ C≤lnr2 ( r
4
)
and assume that ξ(∞)

1,0 (w,P ∩C(r)) 6=
ξ

(∞)
1,0 (w,P ∩ C≤lnr2(r)). Then there exists a downward paraboloid Π↓(v1, h1), whose boundary
contains w, that contains no point of P ∩ C≤lnr2 (r) and contains at least one point of P ∩ C (r).

If h1 ≤ lnr2, we observe that thanks to ln = 1
22n+7 and the fact that w ∈ C

(
r
4
)
, we get for any

(v′, h′) ∈ Π↓(v1, h1),

‖v′‖ ≤ ‖v′ − v1‖+ ‖v1‖ ≤
√

2h1 + ‖v − v1‖+ ‖v‖ ≤ 2
√

2h1 + r

4
≤ 2
√

2lnr2 + r

4 ≤ r. (3.22)

The last inequality in (3.22) implies that Π↓(v1, h1) is contained in C≤lnr2 (r) which is excluded.
If h1 > lnr

2, we claim that the intersection between Π↑(w) and the vertical plane containing w
and (v1, h1) contains exactly two points at height equal to lnr2 and we call (v2, h2) the one which is
closer to (v1, h1), see Figure 7. Thanks to Lemma 3.1, the paraboloid Π↓(v1, h1) contains half of the
down paraboloid with apex at the vertical projection of (v2, h2) onto ∂Π↓(v1, h1). Consequently,
Π↓(v1, h1) also contains Π↓+(v2, h2) ∩ C≤lnr2(r) where Π↓+(v2, h2) denotes half of Π↓(v2, h2). This
latter set has volume crd+1 so we can show by using deterministic orthants as in the proof of Lemma
3.2 that

P(P ∩Π↓+(v2, h2) ∩ C≤lnr
2
(r) = ∅) ≤ exp(−crd+1). (3.23)

Denoting by D the set of points of ∂Π↑(w) at height lnr2 and discretizing D, we obtain

P(∃(v2, h2) ∈ D : P ∩Π↓+(v2, h2) ∩ C≤lnr
2
(r) = ∅) ≤ c1 exp(−c2rd+1).

Using Mecke’s formula we get

P
(
∃w ∈ P(λ) ∩ C≤lnr

2
(r

4

)
: ξ(∞)

1,0 (w,P(λ) ∩ C(r)) 6= ξ
(∞)
1,0 (w,P(λ) ∩ C≤lnr

2
(r))

)
≤ c1Vold

(
C≤lnr

2
(r

4

))
exp(−c2rd+1) ≤ c1 exp(−c2rd+1).
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Figure 7 – Case m = 1 of Lemma 3.4.

This proves the base case for λ =∞.

Proof of the induction step for λ = ∞. Now for fixed 2 ≤ m ≤ n we assume that the result holds
for any p < m and we show that it remains true for m. Let w ∈ C≤lnr2 ( r

2m+1

)
. We denote by Ew

the event
Ew := {ξ(∞)

m,0 (w,P ∩ C(r)) 6= ξ
(∞)
m,0 (w,P ∩ C≤lnr

2
(r))}.

When on Ew, we also assume that ξ(∞)
m,0 (w,P ∩ C≤lnr2(r)) = 1, i.e. `(∞)(w,P ∩ C≤lnr2(r)) = m.

Indeed, the case ξ(∞)
m,0 (w,P∩C(r)) = 1 can be treated in a similar way, see what we did when dealing

with events E1 and E2 in the proof of Proposition 3.3. In particular, when `(∞)(w,P∩C≤lnr2(r)) =
m, the depth `(∞)(w,P ∩ C(r)) is larger than (m+ 1) thanks to Lemma 2.6.

In other words, there exists a downward paraboloid Π↓(v1, h1) whose boundary contains w and
that only contains points on a layer of order at most (m − 1) for the peeling in C≤lnr2 (r) and at
least one point denoted by (v3, h3) such that

`(∞)((v3, h3),P ∩ C(r)) ≥ m and `(∞)((v3, h3),P ∩ C≤lnr
2
(r)) ≤ m− 1. (3.24)

If h1 ≤ lnr2, then for (v′, h′) ∈ Π↓(v1, h1), we obtain by the same method as in (3.22) that

‖v′‖ ≤ 2
√

2h1 + r

2m+1 ≤ 2
√

2lnr2 + r

2m+1 ≤
r

2m . (3.25)

We notice that the last inequality in (3.25) still holds when ln is replaced by 1
22n+5 , which means

that our current calibration takes into account the case λ < ∞ which is discussed at the end
of the proof. The estimate (3.25) shows that the paraboloid Π↓(v1, h1) stays in C≤lnr

2 ( r
2m
)
.

Consequently the point (v3, h3) introduced above belongs to C≤lnr2 ( r
2m
)
and by (3.24), it satisfies

ξ
(∞)
p,0 ((v3, h3),P ∩ C≤lnr2(r)) 6= ξ

(∞)
p,0 ((v3, h3),P ∩ C(r)) for p = `(∞)((v3, h3),P ∩ C≤lnr2(r)) < m.

Using the induction hypothesis, this happens with probability smaller than c1 exp(−c2rd+1).
If h1 > lnr

2 we proceed as in the case m = 1 by using the construction described in Figure 7.
Namely, we show that there exists half of a paraboloid whose apex is on ∂Π↑(w) at height lnr2
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and that only contains points on a layer of order at most (m− 1) for the peeling of P ∩C≤lnr2(r).
Let us denote by A this half-paraboloid. Thanks to (3.25), the set A is included in C

(
r

2m
)
which

implies that
P
(
P ∩A ∩ C≥lnr

2/2
( r

2m
)

= ∅
)
≤ exp(−crd+1). (3.26)

If P ∩A ∩ C≥lnr2/2 ( r
2m
)
6= ∅, we choose (v4, h4) in that set and two cases arise.

If `(∞)((v4, h4),P ∩ C(r)) = `(∞)((v4, h4),P ∩ C≤lnr2(r)), then `(∞)((v4, h4),P ∩ C(r)) ≤
(m − 1) and h4 ≥ lnr

2/2 = cr2. Using Lemma 3.2, this happens with probability smaller than
c1 exp(−c2rd+1).

If `(∞)((v4, h4),P ∩ C(r)) 6= `(∞)((v4, h4),P ∩ C≤lnr2(r)), we can use the induction hypoth-
esis and a union bound for p < m to prove that this happens with probability smaller than
c1 exp(−c2rd+1).

To sum up, we have shown that for any w ∈ C≤lnr2 ( r
2n
)

P(Ew) ≤ c1r(m−1)(d+1) exp(−c2rd+1).

Using Mecke’s formula, we finally obtain

P
(
∃w ∈ C≤lnr

2
( r

2m+1

)
: ξ(∞)
m,0,(w,P(λ) ∩ C(r)) 6= ξ

(∞)
m,0,(w,P(λ) ∩ C≤lnr

2
(r))

)
≤ c1rm(d+1) exp(−c2rd+1).

Case λ < ∞. We have to adapt the arguments where either the actual equation of a paraboloid
or a lower bound of the intensity measure of P is used, namely (3.22), (3.23), (3.25) and (3.26).
Thanks to (2.4), for λ large enough, the series of estimates leading to (3.22) can be replaced by

‖v′‖ ≤ . . . ≤ 4
√

2h1 + r

4 ≤ 4
√

2lnr2 + r

4 ≤ r. (3.27)

The adaptation of (3.25) is identical.
In order to show (3.23) for λ < ∞, we use (3.27) to show that [Π↓](λ)(v2, h2) is included

in C( r2 ) for λ large enough. In particular, the set [Π↓](λ)(v2, h2) ∩ C≤lnr2(r) is contained in

C≤λ
2
d+1 /2( 1

2λ
1
d+1π) which is a domain where the intensity measure of P(λ) is bounded from be-

low. Consequently, (3.23) occurs for λ <∞ as well. In the same way, the estimate (3.26) holds for
λ <∞ as well because A ∩ C≥lnr2/2 ( r

2m
)
is included in C≤λ

2
d+1 /2( 1

2λ
1
d+1π).

3.3 Stabilization for k-faces
Henceforth, we fix n ≥ 1 and k ∈ {0, . . . , d − 1}. We aim at proving Proposition 3.6 which

states a stabilization result for the quantities ξ(λ)
n,k introduced at (2.10). To do so, we start with a

intermediary lemma on the distribution tail of the height of the parabolic facets containing a fixed
point from the n-th layer.

Let us recall the definition of the set F (λ)
n,d−1(w, Y ) given on page 12. For any locally finite set

Y ⊂ Rd−1 × R+ and w = (v, h) ∈ Rd−1 × R+, we introduce the maximal height of the facets from
F (λ)
n,d−1(w, Y ), i.e. H(λ)

n (w, Y ) = 0 if w 6∈ ∂Φn(Y ) and otherwise,

H(λ)
n (w, Y ) = sup{h1 > 0 : ∃v1 ∈ Rd−1, F ∈ F (λ)

n,d−1(w, Y ) s.t. F ⊂ ∂[Π↓](λ)(v1, h1)}. (3.28)
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Lemma 3.5. For all n ≥ 1 there exist λ0, c1, c2 > 0 such that for all λ ∈ [λ0,+∞], h0 ∈ (0, λ
2
d+1 ),

t > 0 and 1 ≤ r < πλ
1
d+1 , we have

P(∃s ≥ r : H(λ)
n ((0, h0),P(λ) ∩ C(s)) ≥ t) ≤ c1 exp(−c2

√
t(r ∧

√
t)d) (3.29)

and
P(H(λ)

n ((0, h0),P(λ)) ≥ t) ≤ c1 exp(−c2t
d+1

2 ). (3.30)

Proof. We only prove (3.29) as the proof of (3.30) is almost identical.

Case λ =∞. For (v1, h1) ∈ Rd−1 × R+, we introduce the events

E(v1,h1) = {∃s ≥ r, F ∈ Fn,d−1((0, h0),P ∩ C(s)), F ⊆ ∂Π↓(v1, h1)}

and
E = E(t) :=

⋃
(v1,h1)∈Π↑(0,h0),h1≥t

E(v1,h1).

It is enough to prove that
P(E) ≤ c1 exp(−c2

√
t(r ∧

√
t)d). (3.31)

In the same spirit as in the proof of Proposition 3.3, we consider two cases depending on the value
of h0. The left- (resp. right-) hand side of Figure 6 reflects the first case h0 ≥ t/2 (resp. h0 ≤ t/2).

Case h0 ≥ t/2. As in the proof of Lemma 3.2, we start by decomposing Π↓(0, h0) into 2d−1

deterministic subparts A1, . . . , A2d−1 such that

Vold(Ai ∩ C≥h0/2((r ∧
√
t)/2n)) = 1

2d−1Vold(Π
↓((0, h0)) ∩ C≥h0/2((r ∧

√
t)/2n))

≥ ct(r ∧
√
t)d−1. (3.32)

Let (v1, h1) ∈ Π↑(0, h0) such that h1 ≥ t and ∂Π↓(v1, h1) contains a facet of ∂Φn(P ∩ C(s))
going through (0, h0) for some s ≥ r. By Lemma 3.1, Π↓(v1, h1) contains half of Π↓(0, h0), which
implies that it contains a set Ai ∩ C≥h0/2((r ∧

√
t)/2n) for some i. Consequently,

P(E) = P
( ⋃

(v1,h1)∈Π↑(0,h0),h1>t

E(v1,h1)

)

≤ P
( ⋃
s≥r

2d−1⋃
i=1
{P ∩Ai ∩ C≥h0/2((r ∧

√
t)/2n) ⊂ [Φn(P ∩ C(s))]c}

)

≤ P
( 2d−1⋃

i=1
{P ∩Ai ∩ C≥h0/2((r ∧

√
t)/2n) ⊂ [Φn(P ∩ C(r))]c}

)
≤ 2d−1P(P ∩A1 ∩ C≥h0/2((r ∧

√
t)/2n) ⊂ [Φn(P ∩ C(r))]c). (3.33)

where the inclusion Φn(P ∩ C(r)) ⊂ Φn(P ∩ C(s)) is due to Lemma 2.6. By (3.32), P does not
meet A1 ∩ C≥h0/2((r ∧

√
t)/2n) with probability smaller than exp(−ct(r ∧

√
t)d−1). Otherwise it
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contains a point (v3, h3) with h3 ≥ h0/2 ≥ t/4 and such that `(∞)((v3, h3),P ∩ C(r)) ≤ (n − 1).
Using Lemma 3.2, we obtain that

P(P ∩A1 ∩ C≥h0/2((r ∧
√
t)/2n) ⊂ Φcn(Pλ ∩ C(r))) ≤ c1 exp(−c2t(r ∧

√
t)d−1),

which implies (3.31) thanks to (3.33) and the inequality t(r ∧
√
t)d−1 ≥

√
t(r ∧

√
t)d.

Case h0 ≤ t/2. Let (v1, h1) ∈ ∂Π↑(0, h0) such that h1 ≥ t and ∂Π↓(v1, h1) contains a facet of
∂Φn(P ∩ C(s)) going through (0, h0) for some s ≥ r. For u > 0, the height of the highest point
of intersection between Π↓(v1, h1) and C(u/2n+1) in the vertical plane containing (v1, h1) and the
origin is

h2 := h0 +
√

2(h1 − h0) u

2n+1 −
u2

22n+3 . (3.34)

We take u =
√

2(h1 − h0) ∧ r and fit a cylinder C0 of radius u
2n+2 between height h2/2 and h2 in

C( u2n )∩Π↓(v1, h1), see the right-hand side of Figure 6 with r replaced by u. Either the point process
P does not meet the cylinder C0 which happens with probability exp(−ch2u

d−1) or it contains a
point (v3, h3) with h3 ≥ h2/2 and such that

`(∞)((v3, h3),P ∩ C(r)) ≤ `(∞)((v3, h3),P ∩ C(s)) ≤ (n− 1).

Using Lemma 3.2, this happens with probability smaller than c1 exp
(
−c2h2(u ∧

√
h2)d−1). Conse-

quently, we get
P(E(v1,h1)) ≤ c1ud−1 exp

(
−c2h2(u ∧

√
h2)d−1

)
. (3.35)

It remains to make explicit the right-hand side of (3.35) in the two cases u =
√

2(h1 − h0) and
u = r.

When u =
√

2(h1 − h0) ≤ r, we deduce from (3.34) and the fact that h1 ≥ t that

h2 = h0 + h1 − h0

2n − h1 − h0

22(n+1) ≥ c(h1 − h0) ≥ c′t. (3.36)

Combining (3.35) with (3.36), we obtain

P(E(v1,h1)) ≤ c1 exp(−c2(h1 − h0)
√
t
d−1

). (3.37)

When u = r ≤
√

2(h1 − h0), we obtain in the same way

P(E(v1,h1)) ≤ c1 exp(−c2(h1 − h0)rd). (3.38)

Discretizing and integrating the right-hand sides of (3.37) and (3.38) over the set {(v1, h1) ∈
Π↑(0, h0) : h1 ≥ t}, we deduce (3.31) when h0 ≤ t/2.

This completes the proof of (3.29) in the case λ =∞.

Case λ < ∞. In the case h0 ≥ t/2, we need to replace Ai ∩ C≥h0/2((r ∧
√
t)/2n) with Ai ∩

C(h0/2, 3h0
4 )((r ∧

√
t)/2n) which is included in C≤

3
4λ

2
d+1 (π2λ

1
d+1 ) so that we can lower bound by a

constant the density of the intensity measure of P(λ) when on that particular set. We adapt the
case h0 ≤ t/2 in the exact same way as in the proof of Proposition 3.3 by replacing the equality
(3.34) by an inequality up to a multiplicative constant and reducing the cylinder C0 so that it is
included in C(h2/2, 3

4h2)( u2n ), which makes it possible to lower bound by a constant the density of
the intensity measure of P(λ) on C0.
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Proposition 3.6. For any n ≥ 1 there exists λ0, c1, c2 > 0 such that for any h0 > 0, λ ∈ [λ0,+∞]
and 1 ≤ r < πλ

1
d+1 , we have

P
(
R

(λ)
n,k(0, h0) ≥ r

)
≤ c1 exp

(
−c2rd+1) .

Proof. Let us assume that R(λ)
n,k(0, h0) > r.

First, we can also assume that R(λ)
n,0(0, h0) < r since the complement occurs with probabil-

ity smaller than c1 exp
(
−c2rd+1) by Proposition 3.3. In particular we have ξ(λ)

n,0((0, h0),P(λ)) =
ξ

(λ)
n,0((0, h0),P(λ) ∩ C(s)) for every s ≥ r. We can also assume that both are different from 0, or
equivalently that (0, h0) is on the n-th layer for both peelings because otherwise we would have
R

(λ)
n,k(0, h0) ≤ r.
Thanks to Lemma 3.5, we have min(Hn((0, h0),P(λ)),maxs≥rHn((0, h0),P(λ)∩C(s))) > r2/32

with probability smaller than c1 exp
(
−c2rd+1). Consequently, we can assume that for any s ∈

[r,∞], Hn((0, h0),P(λ) ∩ C(s)) ≤ r2/32.
Let

U = U(h0, r
2/32) :=

⋃
(v1,h1)∈∂[Π↑](λ)(0,h0),h1≤r2/32

Π↓(v1, h1). (3.39)

When λ =∞, a point (v, h) ∈ U verifies ‖v‖ ≤
√

2(r2/32− h0) +
√

2r2/32 ≤ 2
√

2r2/32 ≤ r/2. By
(2.4), this implies that for λ large enough, a point (v, h) ∈ U satisfies ‖v‖ ≤ 3

4r.

The set U is designed to include all points of P(λ) which lie on a common k-face of ∂Φn(P(λ) ∩
C(s)) with (0, h0) for every s ∈ [r,∞]. We assert that

{R(λ)
n,k((0, h0),P(λ)) ≥ r} ⊂ {∃w ∈ P(λ) ∩ U : R(λ)

n,0(w,P(λ)) ≥ r/4}. (3.40)

Indeed, if every point w ∈ P(λ)∩U verifies R(λ)
n,0(w,P(λ)) ≤ r/4, then the status of these points with

respect to the n-th layer is the same for both P(λ) and P(λ) ∩ C(s), for any s ≥ r. Consequently,
the k-faces of the n-th layer containing (0, h0) are the same for the peeling of any P(λ) ∩ C(s),
s ≥ r, which implies that R(λ)

n,k((0, h0),P(λ)) ≤ r. Using consecutively (3.40), Mecke’s formula and
the fact that the density of the intensity measure of P(λ) is upper bounded by 1, we have

P(R(λ)
n,k(0, h0)) ≥ r) ≤ E

 ∑
x∈U∩P(λ)

1
R

(λ)
n,0(x)≥r/4


≤
∫
U
P(R(λ)

n,0(x) ≥ r/4)dx

≤ Vold(U)c1 exp(−c2rd+1)dx.
≤ c1 exp(−c2rd+1).

This yields the result.

The final result of this section is a slight analogue of Proposition 3.6 for the stabilization in
height, i.e. we prove that with high probability the calculation of the score of (0, h0) inside the
cylinder C(r) does not depend on the points of the point process which are higher than r2 up to a
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multiplicative constant. The statement of that result uses the following notation: for w = (v, h) ∈
Wλ, r, h > 0, n ≥ 1 and k ∈ {0, . . . , d− 1}, we denote by ξ(λ)

n,k,[r,h](w) the quantity

ξ
(λ)
n,k,[r,h](w,P

(λ)) = ξ
(λ)
n,k(w,P(λ) ∩ C≤hv (r)).

Let us also recall the notation ξ(λ)
n,k,[r](w,P

(λ)) introduced at (3.4).

Lemma 3.7. For all n ≥ 1 and there exists λ0, c > 0 such that for all h0 > 0, λ ∈ [λ0,+∞] and
1 ≤ r < πλ

1
d+1 , we have

P
(
ξ

(λ)
n,k,[r]((0, h0),P(λ)) 6= ξ

(λ)
n,k,[r,lnr2]((0, h0),P(λ))

)
≤ c1 exp(−c2rd+1)

with ln = 1
22n+7 .

Proof. We denote by A the event {Hn((0, h0),P(λ) ∩ C(r)) > lnr
2}. Using Lemma 3.5 with the

choice r for t and lnr2 for r, we get

P(A) ≤ c1 exp(−c2rd+1). (3.41)

On the event Ac, every paraboloid containing a facet going through (0, h0) of ∂Φn(P(λ) ∩ C(r))
has height smaller than lnr2. This implies that every point that shares a facet of ∂Φn(P(λ) ∩C(r))
with (0, h0) is on the boundary of such a paraboloid and is consequently included in C≤lnr2 ( r

2n+1

)
by the same method as in (3.23). Using Lemma 3.4, we obtain that with probability larger than
1 − c1 exp(−c2rd+1), any w ∈ C≤lnr2 ( r

2n+1

)
verifies ξ(λ)

n,0,[r](w,P
(λ)) = ξ

(λ)
n,0,[r,lnr2](w,P

(λ)). Thus
we deduce that with probability larger than 1 − c1 exp(−c2rd+1), the k−faces containing w of
∂Φn(P(λ) ∩ C(r)) coincide with those of ∂Φn(P(λ) ∩ C≤lnr2(r)). In other terms we have proved
that

P
(
{ξ(λ)
n,k,[r]((0, h0),P(λ)) 6= ξ

(λ)
n,k,[r,ln]((0, h0),P(λ))} ∩Ac

)
≤ c1 exp(−c2rd+1). (3.42)

Combining (3.41) and (3.42), we obtain the result.

4 Lp bounds and pointwise convergences
In this section, we prove intermediary results on the functionals ξ(λ)

n,k and their variations which
depend on the stabilization properties of Section 3 and pave the way to the proofs of Theorems 2.8
and 2.9. More precisely, Lemma 4.1 states some moment bounds, Lemma 4.2 and Proposition 4.3
show in two steps the convergence of the expectation of ξ(λ)

n,k to the expectation of ξ(∞)
n,k . We then

deduce similar results for covariances of scores in Proposition 4.4 and Lemma 4.5.

Lemma 4.1. For any p ∈ [1,+∞), there exist constants λ0, c > 0 such that for any (v, h) ∈
Rd−1 × R+ , λ ∈ [λ0,∞] and 1 ≤ r < πλ

1
d+1

E
[
ξ

(λ)
n,k((v, h),P(λ))p

]
≤ c1hpk exp(−c2h

d+1
2 ), (4.1)
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E
[
ξ

(λ)
n,k,[r]((v, h),P(λ))p

]
≤ crpk(d−1)+1(h ∨ r2)pk, (4.2)

E
[
ξ

(λ)
n,k,[r,lnr2]((v, h),P(λ))p

]
≤ crpk(d+1)+1. (4.3)

with ln = 1
22n+7 .

Proof. The method is almost identical to [15, Lemma 4.4]. For the sake of completeness and because
the variants at (4.2) and (4.3) are new in comparison to [15], we provide as an example the proof
of (4.2).

We assert that ξ(λ)
n,k,[r]((v, h),P(λ)) d= ξ

(λ)
n,k,[r]((0, h),P(λ)) because of the rotation-invariance of

the initial model in the unit ball.
We introduce the variables H := H

(λ)
n ((0, h),P(λ) ∩ C(r))) as defined at (3.28) and R as the

smallest s > 0 such that C(s) contains
⋃

(v1,h1)∈P(λ)∩U(h,H) Cv1(R(λ)
n,k(v1, h1)) where U(·, ·) has been

introduced at (3.39). We assert that the proof of Proposition 3.6 implies that

P(R ≥ r) ≤ c1e−c2r
d+1

. (4.4)

In particular, only the points in C≤H(R) can be part of a potential facet containing (0, h) on
∂Φ(λ)

n (P(λ)). This implies that

ξ
(λ)
n,k((0, h),P(λ)) ≤ 1

k + 1

(
N

k

)
where N = card(C≤H(R) ∩ P(λ)). Consequently, it is enough to show that there exist c > 0 such
that

E[Npk] ≤ crpk(d−1)+1(h ∨ r2)pk. (4.5)
We decompose the expectation in the following way:

E[Npk] =
dre∑
i=1

∞∑
j=bhc+1

E[Npk1(i−1)≤R<i1(j−1)≤H<j ]

≤
dre∑
i=1

∞∑
j=bhc+1

E[card(C≤j(i) ∩ P(λ))pk1(i−1)≤R<i1(j−1)≤H<j ]

≤
dre∑
i=1

∞∑
j=bhc+1

E[card(C≤j(i) ∩ P(λ))3pk]1/3P(R ≥ i− 1)1/3P(H ≥ j − 1)1/3 (4.6)

where the last line is a consequence of Hölder’s inequality. For any i, j ≥ 0, we observe that
C≤j(i) has volume cid−1j and thanks to (2.1), the dP(λ)-measure of C≤j(i) is bounded by its
volume. Consequently, the variable card(P ∩ C≤j(i)) is stochastically dominated by a Poisson
variable Po(cid−1j). Combining this fact, the moment bound E[Po(λ)r] ≤ cλr for any r ≥ 1 and
(4.6), we obtain

E[Npk] ≤
dre∑
i=1

∞∑
j=bhc+1

cipk(d−1)jpkP(R ≥ (i− 1))1/3P(H ≥ (j − 1))1/3.
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Let us assume that h ≤ r2. We can now use Lemma 3.5 and (4.4) to get

E[Npk] ≤
dre∑
i=1

c1i
pk(d−1)e−c2i

d+1

 br2c∑
j=bhc+1

jpke−c3j
d+1

2 +
∞∑

j=br2c+1

jpke−c4
√
jrd


≤ c1rpk(d−1)+1r2pk

(
e−c2h

d+1
2 + e−c3r

d+1
)
.

This shows (4.5) and consequently (4.2). We proceed in the same way when h ≥ r2.

The next lemma is a first step towards the convergence of the expectation of ξn,k stated in
Proposition 4.3. It relies on the application of the continuous mapping theorem to the intersection
of the point process P(λ) with the compact set C≤lnr2(r).

Lemma 4.2. There exists c > 0 such that for all h0 ≥ 0 and r ≥ 1 we have

lim
λ→+∞

|E[ξ(λ)
n,k,[r]((0, h0),P(λ))]− E[ξ(∞)

n,k,[r]((0, h0),P)]| ≤ c1rk(d−1)+1/2(h0 ∨ r2)ke−c2r
d+1

.

Proof. For sake of simplicity, we use the following abbreviations:

ξ
(λ)
n,k,[r] := ξ

(λ)
n,k,[r]((0, h0),P(λ)) and ξ

(∞)
n,k,[r] := ξ

(∞)
n,k,[r]((0, h0),P).

Recalling ln = 1
22n+7 , we use similar notations ξ(λ)

n,k,[r,lnr2] and ξ
(∞)
n,k,[r,lnr2] and obtain∣∣E[ξ(λ)

n,k,[r]]− E[ξ(∞)
n,k,[r]]

∣∣
≤
∣∣E[ξ(λ)

n,k,[r] − ξ
(λ)
n,k,[r,lnr2]]

∣∣+∣∣E[ξ(λ)
n,k,[r,lnr2]]− E[ξ(∞)

n,k,[r,lnr2]]
∣∣+∣∣E[ξ(∞)

n,k,[r,lnr2] − ξ
(∞)
n,k,[r]]

∣∣. (4.7)

We start by bounding the first term in the rhs of (4.7). Using the Cauchy-Schwarz inequality, we
get ∣∣E[ξ(λ)

n,k,[r] − ξ
(λ)
n,k,[r,lnr2]]

∣∣ =
∣∣E[(ξ(λ)

n,k,[r] − ξ
(λ)
n,k,[r,lnr2])1{ξ(λ)

n,k,[r] 6=ξ
(λ)
n,k,[r,lnr2]

}]
∣∣

≤ E[(ξ(λ)
n,k,[r] − ξ

(λ)
n,k,[r,lnr2])

2]1/2P(ξ(λ)
n,k,[r] 6= ξ

(λ)
n,k,[r,lnr2])

1/2.

Combining Lemma 3.7 and Lemma 4.1, we obtain for λ large enough∣∣E[ξ(λ)
n,k,[r] − ξ

(λ)
n,k,[r,lnr2]]

∣∣≤ c1rk(d−1)+1/2(h0 ∨ r2)k exp(−c2rd+1). (4.8)

In the same way, we bound the third term in the rhs of (4.7) to get∣∣E[ξ(∞)
n,k,[r] − ξ

(∞)
n,k,[r,lnr2]]

∣∣≤ c1rk(d−1)+1/2(h0 ∨ r2)k exp(−c2rd+1). (4.9)

Let us now prove that
lim

λ→+∞
E[ξ(λ)

n,k,[r,lnr2]] = E[ξ(∞)
n,k,[r,lnr2]]. (4.10)

To do so, we first prove the convergence in distribution of ξ(λ)
n,k,[r,lnr2] to ξ

(∞)
n,k,[r,lnr2]. We denote by

X (r, lnr2) the set of finite points sets in C≤lnr2(r) and we endow it with the discrete topology. A
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sequence of point sets (ηi)i of X (r, lnr2) converges to a point set η if ηi = η for all i ≥ i0 for some
i0 ∈ N.

We define for all w ∈Wλ and η ∈ X (r, lnr2)

gn,λ(w, η) := ξ
(λ)
n,k,[r,lnr2](w, η).

Considering that P(λ) → P in distribution in C≤lnr
2(r) by Lemma 2.1, we intend to show the

convergence in distribution gn,λ(w0,P(λ)) → gn,∞(w0,P) by using [9, Theorem 5.5, p. 34]. To do
so, we observe that since P is in general position with probability 1, it is enough to prove that for
any η ∈ X (r, l) in general position, gn,λ(w0, η) = gn,∞(w0, η) for all λ large enough.

Let η ∈ X (r, lnr2) be in general position. We explain here why for each point w1 of η, the
number of the layer containing w1 and the local structure of that layer around w1 are fixed for λ
large enough. We start by considering an extreme point w1 for the parabolic hull peeling of η. We
choose a (d−1)-dimensional parabolic face containing w1 which is generated by the extreme points
w1, w2, . . . , wd and we also denote by Π↓(v, h) the downward paraboloid containing that face on its
boundary. For ε > 0 small enough, the intersection of Π↓(v, h + ε) with η is {w1, · · · , wd}. Since
the quasi-paraboloids converge to the real paraboloids as λ goes to infinity, for λ large enough the
quasi-paraboloid with w1, . . . , wd on its boundary is contained in Π↓(v, h+ ε) and does not contain
any point of η in its interior. This means that for λ large enough, w1 is extreme and the facets
containing it are generated by the same points. Applying this to every extreme point, we deduce
that the first layer is stable for λ large enough. By induction on the number of the layer, we prove
similarly that the subsequent layers of the quasi-parabolic hull peeling of η are stable for λ large
enough. This means that gn,λ(w0, η) = gn,∞(w0, η) for all λ large enough and as a consequence
completes the proof of the convergence in distribution of ξ(λ)

n,k,[r,lnr2](w0,P(λ)) to ξ(∞)
n,k,[r,lnr2](w0,P).

This extends to (4.10) by [9, Theorem 5.4] since the considered sequence is bounded in Lp with
p > 1 thanks to Lemma 4.1.

Inserting the results (4.8), (4.9) and (4.10) into (4.7), we deduce Lemma 4.2.

We are now ready to state the required convergence in expectation in Proposition 4.3 below.

Proposition 4.3. For any n ≥ 1 and all h0 > 0 we have

lim
λ→+∞

E
[
ξ

(λ)
n,k((0, h0),P(λ))

]
= E

[
ξ

(∞)
n,k ((0, h0),P)

]
.

Proof. With the same notation as in the proof of Lemma 4.2, we get from the triangle inequality
that∣∣E[ξ(λ)

n,k]− E[ξ(∞)
n,k ]

∣∣ ≤∣∣E[ξ(λ)
n,k]− E[ξ(λ)

n,k,[r]]
∣∣+
∣∣E[ξ(λ)

n,k,[r]]− E[ξ(∞)
n,k,[r]]

∣∣+
∣∣E[ξ(∞)

n,k,[r]]− E[ξ(∞)
n,k ]

∣∣. (4.11)

Using the same method as in the proof of (4.8), we obtain thanks to Proposition 3.6 and Lemma
4.1 that for r large enough,

max(
∣∣E[ξ(λ)

n,k]− E[ξ(λ)
n,k,[r]]

∣∣, ∣∣E[ξ(∞)
n,k,[r]]− E[ξ(∞)

n,k ]
∣∣) ≤ rk(d−1)+ 1

2 +2ke−cr
d+1

2 . (4.12)

Inserting (4.12) and the result of Lemma 4.2 into (4.11), we obtain that for any ε > 0, there exists
r large enough such that limλ→∞

∣∣E[ξ(λ)
n,k]− E[ξ(∞)

n,k ]
∣∣ ≤ ε. This completes the proof of Proposition

4.3.
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In view of the required variance estimates, we now aim at extending Proposition 4.3 when the ex-
pectation of a score is replaced by the covariance of two scores ξ(λ)

n,k((0, h0),P(λ)) and ξ(λ)
n,k((v1, h1),P(λ))

at two points (0, h0) and (v1, h1) belonging to Wλ. To do so, we study the two-point correlation
function defined at (2.12).
Proposition 4.4. For all h0 ≥ 0 and (v1, h1) ∈ Rd−1 × R+ we have

lim
λ→∞

c
(λ)
n,k((0, h0), (v1, h1)) = c

(∞)
n,k ((0, h0), (v1, h1)).

Proof. For sake of simplicity, let us use the following reduced notation for λ ∈ [λ0,∞]:

ξ(λ)(0) := ξ
(λ)
n,k

(
(0, h0),P(λ) ∪ {(v1, h1)}

)
, ξ(λ)(1) := ξ

(λ)
n,k ((v1, h1),P ∪ {(0, h0)}) . (4.13)

By Proposition 4.3, we get

lim
λ→∞

E
[
ξ

(λ)
n,k

(
(0, h0),P(λ)

)]
E
[
ξ

(λ)
n,k

(
(v1, h1),P(λ)

)]
= E

[
ξ

(∞)
n,k ((0, h0),P)

]
E
[
ξ

(∞)
n,k ((v1, h1),P)

]
so we only need to prove

lim
λ→∞

E
[
ξ(λ)(0)ξ(λ)(1)

]
= E

[
ξ(∞)(0)ξ(∞)(1)

]
. (4.14)

Let us fix ε > 0. We can show that for r large enough

lim
λ→∞

∣∣E [ξ(λ)(0)ξ(λ)(1)
]
− E[

[
ξ

(λ)
[r] (0)ξ(λ)

[r] (1)
] ∣∣ ≤ ε, (4.15)

lim
λ→∞

∣∣E [ξ(λ)
[r] (0)ξ(λ)

[r] (1)
]
− E[

[
ξ(λ)

[r,lnr2]
(0)ξ(λ)

[r,lnr2](1)
] ∣∣ ≤ ε, (4.16)

lim
λ→∞

∣∣E[
[
ξ(λ)

[r,lnr2]
(0)ξ(λ)

[r,lnr2](1)
]
− E[

[
ξ(∞)

[r,lnr2]
(0)ξ(∞)

[r,lnr2](1)
] ∣∣ = 0, (4.17)∣∣E [ξ(∞)

[r] (0)ξ(∞)
[r] (1)

]
− E[

[
ξ(∞)

[r,lnr2]
(0)ξ(∞)

[r,lnr2](1)
] ∣∣ ≤ ε, (4.18)∣∣E [ξ(∞)(0)ξ(∞)(1)

]
− E[

[
ξ

(∞)
[r] (0)ξ(∞)

[r] (1)
] ∣∣ ≤ ε (4.19)

where we have used the reduced notation for ξ(λ)
n,k,[r] and ξ

(λ)
n,k,[r,lnr2] and their counterparts in the

limit model similar to the one introduced at (4.13). These five assertions imply (4.14) so it is
enough to show each of them. We claim that (4.15), (4.16), (4.18) and (4.19) are obtained by
similar methods. Consequently we omit the proofs of (4.16), (4.18) and (4.19) and concentrate on
getting (4.15). ∣∣E [ξ(λ)(0)ξ(λ)(1)

]
− E[

[
ξ

(λ)
[r] (0)ξ(λ)

[r] (1)
] ∣∣

≤
∣∣E [(ξ(λ)(0)− ξ(λ)

[r] (0))ξ(λ)(1)
] ∣∣+

∣∣E [ξ(λ)
[r] (0)(ξ(λ)(1)− ξ(λ)

[r] (1))
] ∣∣. (4.20)

We derive an upper bound for the first term in the rhs of (4.20), the second term being treated
identically. Using Hölder’s inequality, we obtain∣∣E [(ξ(λ)(0)− ξ(λ)

[r] (0))ξ(λ)(1)
] ∣∣

=
∣∣E [(ξ(λ)(0)− ξ(λ)

[r] (0))ξ(λ)(1)1{ξ(λ)(0) 6=ξ(λ)
[r] (0)}

] ∣∣
≤ E[|ξ(λ)(0)− ξ(λ)

[r] (0)|3]1/3E[ξ(λ)(1)3]1/3P(ξ(λ)(0) 6= ξ
(λ)
[r] (0))1/3.
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The estimate (4.15) is then a consequence of Proposition 3.6 and Lemma 4.1. The convergence
(4.17) is derived analogously to (4.10) by using [9, Theorem 5.4] and Lemma 4.1. This proves
Proposition 4.4.

Lemma 4.5 below asserts that the correlation function c(λ)
n,k decays exponentially fast as a function

of the heights of the two points and of the distance between them. This means in particular that
the scores get closer to being independent as the distance between the points increases. The proof
of Lemma 4.5 relies on Proposition 3.6 and Lemma 4.1 and is identical to the proof of [15, Lemma
4.8]. For that reason, it is omitted.
Lemma 4.5. For all n ≥ 1, there exist c1, . . . , c4 > 0 such that for any h > 0, (v1, h1) ∈ Rd−1×R+,
p ≥ 1 and λ ∈ [1,∞] we have

|c(λ)
n,k((0, h0), (v1, h1))| ≤ c1hc2

0 h
c3
1 exp

(
−c4

(
‖v1‖d+1 + h

d+1
2

0 + h
d+1

2
1

))
.

5 Proofs of the main results
In this section, Theorems 2.8–2.11 are proved. We recall that they include the statements on

the limiting expectations and variances of Theorems 1.1 and 1.2. We have chosen to omit the proof
of the central limit theorems as it is the exact replicate line by line of [13, pages 93–98] when the
convex hull is replaced by the n-th layer of the peeling.

5.1 Results on k-dimensional faces
Proof of Theorem 2.8.

Proof of the convergence of the normalized expectation. The first step consists in taking the expec-
tation in (2.9) and using the Mecke formula to get

E[Nn,k,λ] = λ

∫
Bd

E[ξn,k(x,Pλ)]dx.

Let us introduce ed = (0, . . . , 0, 1). By rotation-invariance of E[ξn,k(x,Pλ)], we obtain
E[ξn,k(x,Pλ)] = E[ξn,k(|x|ed,Pλ)].

Then we apply a change of coordinates in spherical coordinates to get

E[Nn,k,λ] = λ

∫
Sd−1

∫ 1

0
E[ξn,k(red,Pλ)]rd−1drdσd−1(u), (5.1)

where σd−1 is the unnormalized area measure on Sd−1.
Recall that for every h > 0, ξ(λ)

n,k((0, h),P(λ)) = ξn,k
(
[T (λ)]−1((0, h)),Pλ

)
, see (2.11). Conse-

quently, an application of the change of variables h = λ
2
d+1 (1− r) in (5.1) leads to

E[Nn,k,λ] = λ

∫
Sd−1

∫ λ
2
d+1

0
E[ξ(λ)

n,k((0, h),P(λ))]λ−
2
d+1 (1− λ−

2
d+1h)d−1dhdσd−1(u)

= λ
d−1
d+1

∫
Sd−1

∫ λ
2
d+1

0
E[ξ(λ)

n,k((0, h),P(λ))](1− λ−
2
d+1h)d−1dhdσd−1(u). (5.2)
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We now wish to use the dominated convergence theorem. Lemma 4.3 implies that for any h > 0

E[ξ(λ)
n,k((0, h),P(λ))](1− λ−

2
d+1h)d−11

0≤h≤λ
2
d+1
−−−−−→
λ→+∞

E[ξ(∞)
n,k ((0, h),P)].

Thanks to Lemma 4.1, the integrand in the rhs of (5.2) is bounded from above by an integrable
function of h, i.e.

E[ξ(λ)
n,k((0, h),P(λ))](1− λ−

2
d+1h)d−11

0≤h≤λ
2
d+1
≤ c1 exp(−c2h

d+1
2 ).

Applying the dominated convergence theorem in (5.2) shows that

lim
λ→∞

λ−
d−1
d+1 E[Nn,k,λ] = Vold−1(Sd−1)

∫ ∞
0

E[ξ(∞)
n,k ((0, h),P)]dh <∞. (5.3)

Proof of the positivity of the limiting expectation. Noticing that

E[ξ(∞)
n,k ((0, h),P)] ≥ 1

k + 1P
(

(0, h0) ∈ ∂Φ(∞)
n (P)

)
,

we deduce that the positivity of the rhs of (5.3) is a consequence of Lemma 5.1 below.

Lemma 5.1. For any (0, h0) with h0 > 0 and any n ≥ 1 :

P
(

(0, h0) ∈ ∂Φ(∞)
n (P)

)
6= 0.

Proof. Let us write w0 := (0, h0) and put T0 := {w0}. Our first step is purely deterministic and
consists in constructing for n = 2 an idealized point configuration which puts w0 on the second
layer. We then extend the procedure for every n > 2 to get a point set which puts w0 on the n-th
layer. In a second step, we introduce randomness and show that this property is stable with respect
to a small random perturbation of the configuration.

For each i ∈ {1, . . . , d− 1}, we write w(i,+) = (
√

2h0
2 ei,

h0
8 ) and w(i,−) = (−

√
2h0
2 ei,

h0
8 ). A direct

calculation shows that for any i, Π↓(w(i,+)) ⊆ Π↓(0, h0), Π↓(w(i,−)) ⊆ Π↓(w0) and Π↓(w(i,s1)) ∩
Π↓(w(j,s2)) = ∅ for any i, j ∈ {1, . . . , d− 1}, s1, s2 ∈ {+,−} such that (i, s1) 6= (j, s2).

Let us consider the deterministic point set T1 := {w0} ∪ {w(i,s) : i ∈ {1, . . . , d− 1}, s ∈ {+,−}}
and describe the peeling of T1. The points w(i,s) are on the first layer because each Π↓(w(i,s)) is
empty. Any downward paraboloid whose boundary goes through w0 contains at least half of Π↓(w0)
by Lemma 3.1 so it contains at least one of the w(i,s). This implies in turn that w0 is not on the
first layer. Furthermore Π↓(w0) only contains points on the first layer so w0 is on the second layer.

We are going to iterate this construction by induction to obtain for every n > 2 an extended
deterministic point configuration Tn−1 = {wa : a ∈ ∪n−1

l=0 ({1, . . . , d − 1} × {+,−})l}, with the
convention (·)0 = {0}, which guarantees that w0 is on the n-th layer of the peeling of Tn−1 and that
for any 1 ≤ l ≤ (n− 1), Tl \ Tl−1 is included on its (n− l)-th layer. To do so, let us assume that we
have constructed Tn−2 with that property. Let us fix a ∈ ({1, . . . , d − 1} × {+,−})n−2 and write
wa = (v, h). We define wa,(i,+) := (v + 1

2

√
2 h0

8n−2 ei,
h

8n−1 ) and wa,(i,−) := (v − 1
2

√
2 h0

8n−2 ei,
h

8n−1 ).
The construction is just a rescaling of the situation described for the case n = 2 with wa playing

the role of w0 and wa,(i,s) that of w(i,s). Consequently, we get the same properties, i.e. for any (i, s)

Π↓(wa,(i,s)) ⊆ Π↓(wa) (5.4)
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Figure 8 – The tree of Lemma 5.1 for n = 3 and d = 2, 3.

and for (i, s1) 6= (j, s2)
Π↓(wa,(i,s1)) ∩Π↓(wa,(j,s2)) = ∅. (5.5)

If we put an edge from wa to each wa,(i,s) then we endow Tn−1 with a structure of tree with root
w0, see Figure 8 in the case n = 3 in dimension 2 and 3. We also take the convention T−1 = ∅.

The construction has been done such that for every l ∈ {0, . . . , (n−1)}, each point wa ∈ (Tl\Tl−1)
is on the (n− l)-th layer of the peeling of Tn−1.

We prove now by downward induction the stability of the property above when the idealized
point set is subject to a small random perturbation. Let us fix ε > 0 and consider the event

An = ∩wa∈Tn−1\{w0}{#(P ∩B(wa, ε)) = 1} ∩ {P ∩ (Π↓(w0) \ ∪wa∈Tn−1B(wa, ε)) = ∅}.

On the event An, for every wa ∈ Tn−1 we denote by w̃a the unique point belonging to P ∩B(wa, ε)
and call it a perturbed point from the tree (with same depth as the original point wa). We then
assert and prove below that the stability occurs, i.e. that the perturbed point w̃a is on the (n− l)-th
layer of the peeling of P ∪ {w0} as soon as the original point wa is at depth l in Tn−1.

We make the following preliminary observation: the calibrations in the construction of the tree
Tn−1 allow us to strengthen (5.4) and (5.5) by claiming that for ε small enough, the ε-neighborhood
of Π↓(wa) is included in Π↓(wb) for any wa ∈ Tn−1 with parent wb and that the ε-neighborhoods of
the downward parabolas associated with two distinct perturbed points at same depth do not meet.

We start with our base case, which is depth (n− 1). For any a ∈ ({1, . . . , d− 1} × {+,−})n−1,
thanks to the observation above, the perturbed point w̃a satisfies that Π↓(w̃a) does not intersect P
when ε is small enough. This shows that all perturbed points at depth (n− 1) are extreme.

Now we assume that for some l ∈ {1, . . . , n − 1}, each perturbed point at depth k is on the
(n − k)-th layer for every l ≤ k ≤ (n − 1). We consider a perturbed point w̃a at depth (l − 1),
which means a ∈ ({1, . . . , d− 1}×{+,−})(l−1). Because of the preliminary observation, for ε small
enough, the downward paraboloid Π↓(w̃a) only contains points that can be written w̃a,b for some
b ∈ ({1, . . . , d− 1} × {+,−})p and 1 ≤ p ≤ (n− l). Thus w̃a is at most on the (n− l + 1)-th layer.
Moreover, noticing that any downward paraboloid whose boundary goes through w̃a contains at
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least one of the w̃a,(i,s), which are on the (n−l)-th layer. This shows that w̃a is on the (n−l+1)−st
layer. A finite induction on l thus gives us that on the event An, w0 is on the n-th layer.

It remains to show that P(An) > 0. Using the Poisson property and (5.4)-(5.5), we get

P(An) = P(P ∩ (Π↓(w0) \ ∪wa∈Tn−1B(wa, ε)) = ∅)
∏

wa ∈ Tn−1 \ {w0}

P(#(P ∩B(wa, ε)) = 1) > 0.

Proof of Theorem 2.9.

Proof of the convergence of the normalized variance. In the same way as for the expectation
asymptotics, the first idea consists in using Mecke’s formula. Combining it with Fubini’s theorem
and writing ξ′n,k,λ(x,Pλ) for the same functional as ξn,k,λ(x,Pλ) save for the fact that x is not
added to the process, we get

Var(Nn,k,λ)

= E
[( ∑

x∈Pλ

ξ′n,k,λ(x,Pλ)
)2]
− E

[ ∑
x∈Pλ

ξ′n,k,λ(x,Pλ)
]2

= E
[ ∑
x∈Pλ

ξ′n,k,λ(x,Pλ)2
]

+ E
[ ∑
x,y∈Pλ
x 6=y

ξ′n,k,λ(x,Pλ)ξ′n,k,λ(y,Pλ)
]
− E

[ ∑
x∈Pλ

ξ′n,k,λ(x,Pλ)
]2

= I1(λ) + I2(λ)

where
I1(λ) := λ

∫
Bd

E
[
ξn,k,λ(x,Pλ)2]dx and I2(λ) := λ2

∫∫
(Bd)2

cn,k,λ(x, y)dxdy.

with

cn,k,λ(x, y) = E [ξn,k,λ(x,Pλ ∪ {y})ξn,k,λ(y,Pλ ∪ {x})]− E [ξn,k,λ(x,Pλ)]E [ξn,k,λ(y,Pλ)] .

We treat I1(λ) as in the proof of Theorem 2.8 to get

lim
λ→+∞

λ−
d−1
d+1 I1(λ) = I1

where we recall the definition of I1 at (2.13). We now prove the convergence of λ−
d−1
d+1 I2(λ). We

follow line by line the method used in [13, calculation of II on pages 92-93], i.e. rewriting in spherical
coordinates, then use of a change of variables provided by the scaling transformation T (λ), to obtain
that

I2(λ) = λ
d−1
d+1

∫
Sd−1

∫ λ
2
d+1

0

∫
T

(λ)
u (Sd−1)

f (λ)(u0, h0, v1, h1)dv1dh1dh0dσd−1(u0)

where

f (λ)(u0, h0, v1, h1) := (1− λ−
2
d+1h0)d−1

sind−2
(
λ−

1
d+1 |v1|

)
|λ−

1
d+1 v1|d−2

(1− λ−
2
d+1h1)d−1c

(λ)
n,k((0, h0), (v1, h1)),
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with c(λ)
n,k defined at (2.12).

It remains to apply the dominated convergence theorem. Using Lemma 4.5, we obtain

|f (λ)(u0, h0, v1, h1)| ≤ c1hc2
0 h

c3
1 exp

(
−c4

(
‖v1‖d+1 + h

d+1
2

0 + h
d+1

2
1

))
which is integrable on Sd−1 × R+ × Rd−1 × R+. We deduce from Proposition 4.4 that

lim
λ→∞

f (λ)(u0, h0, v1, h1) = c
(∞)
n,k ((0, h0), (v1, h1)).

This implies that
lim
λ→∞

λ−
d−1
d+1 I2(λ) = I2,

where I2 has been defined at (2.14).

Proof of the positivity of the limiting variance. This proof is essentially adapted from [17, Sec-
tion 4.5]. The main difference is that we make sure that our points are on the n-th layer instead of
being extremal.

Similarly to what is done in [13, Lemma 7.6], we can use the same arguments as in the proof of
Theorem 2.9 to show that

lim
λ→∞

λ−
d−1
d+1 Var[Nn,k,λ] = lim

λ→∞
λ−

d−1
d+1 Var[Ñn,k,λ] (5.6)

where we write Ñn,k,λ :=
∑
w∈P∩Wλ

ξ
(∞)
n,k (w,P).

Our strategy to prove that the limit in the rhs of (5.6) is positive is the following: we start
by discretizing Wλ and construct in each parallelepiped of that discretization two different config-
urations, said to be good, which have a positive probability to occur and which give birth to two
different values for the local number of k-faces of the n-th layer. Then we check that this counting
is not affected by the external configuration and finally, we find a lower bound for the total variance
conditional on the intersection of the point process with the outside of the parallelepipeds which
contain one of the two good configurations.

Step 1. Construction of a good configuration in a thin parallelepiped. First, we consider a cube
Q ⊆ Rd−1 and we take ρ ∈ (0,∞) smaller than the diameter of Q. We take δ > 0 sufficiently small
such that the paraboloids Π↓(w) are pairwise disjoint for w belonging to the grid (ρZd−1∩Q)×{δ}.
For each w ∈ (ρZd−1 ∩Q)×{δ}, we make the same tree construction as in the proof of Lemma 5.1
inside Π↓(w). We obtain a forest that we call Tn,ρ. In particular, the construction ensures that all
points w ∈ (ρZd−1∩Q)×{δ} belong to the n-th layer of Tn,ρ. Let us write Fn,k(Q, ρ, δ) for the num-
ber of k-faces of the n-th layer of (P \ (Q× [0,∞)))∪Tn,ρ going through any w ∈ (ρZd−1∩Q)×{δ}.
If we ignore the points of P \ (Q× [0,∞)), as the diameter of Q gets large compared to ρ, boundary
effects become negligible and we get

Fn,k(Q, ρ/2, δ) ∼ 2d−1Fn,k(Q, ρ, δ).

Then we consider ε > 0 such that
δ + ε ≤ ρ2

8 . (5.7)
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Figure 9 – A part of the dual grid for non-perturbed points in dimensions 2 and 3.

This guarantees in particular that for any w = (v, δ+ε) and w′ = (v′, δ+ε) with |v−v′| ≥ ρ, we have
Π↓(w) ∩ Π↓(w′) = ∅. As in the proof of the positivity of the expectation, we consider a random
perturbation of the points of Tn,ρ by at most ε for the Euclidean distance, i.e. we assume that
P ∩B(w, ε) consists of one point for each w ∈ Tn,ρ. We notice that the obtained perturbed points
have a height at most equal to δ + ε and are distant by at most 2ρ when ε < ρ/2. Consequently,
for ε small enough, the maximal height of (Q × [0,∞)) \

⋃
w′∈P∩∪w∈Tn,ρB(w,ε) Π↑(w′) is smaller

than α where α is the maximal height of a point in (Q× [0,∞)) \
⋃
w∈(Q∩2ρZd−1)×{δ+ε}Π↑(w). In

particular, we claim that there is a constant cα > 1 depending only on dimension d such that

α ≤ cαρ2. (5.8)

Indeed, up to boundary effects, the set of apices of down paraboloids which contain 2d−1 points of
Q ∩ 2ρZd−1 × {δ + ε} is located on a translated dual grid at height ((d− 1)ρ

2

2 + δ + ε), see Figure
9.

Consequently, let us consider the event

An,ρ = ∩w∈Tn,ρ{#(P ∩B(w, ε)) = 1} ∩ {(P ∩ [(Q× [0, α]) \ ∪w∈Tn,ρB(w, ε)] = ∅}.

Let us write Fn,k(Q, ρ, δ, ε) for the total number of k-faces of the n-th layer of P going through
at least one point in P ∩ ∪w∈(ρZd−1∩Q)×{δ}B(w, ε). Conditional on An,ρ and when the points of
P \ (Q × [0, α]) are ignored, for ε small enough, this quantity is in fact equal to Fn,k(Q, ρ, δ) and
we keep the relation

Fn,k(Q, ρ/2, δ, ε) ∼ 2d−1Fn,k(Q, ρ, δ, ε). (5.9)

Step 2. Influence of the points outside of the thin parallelepiped Q × [0, α]. For any closed set
C ⊆ Rd−1, we define for any γ > 0 C(γ) := {x ∈ C : d(x, ∂C) > γ}. We claim that on An,ρ, for any
w ∈ P ∩ (Q(ρ) × [0, α]), the status of w does not depend on points outside Q× [0, α], i.e.

`(∞)(w,P ∩ (Q× [0, α])) = `(∞)(w,P).
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This is due to the fact that the condition (5.7) guarantees that the down paraboloids with apices
at points from P ∩ (Q(ρ) × [0, α]) are included in Q × [0, α]. Moreover, for c =

√
2cα + 2, we

assert that the facial structure around any point inside P ∩ (Q(cρ) × [0, α]) which belongs to the
n-th layer of the peeling of P does not depend on points outside Q× [0, α]. Indeed, let us consider
w ∈ P∩(Q(cρ)× [0, α]). We choose (d−1) points from P∩(Q(

√
2cαρ)× [0, α]) which share a common

facet of the n-th layer of the peeling of P ∩ (Q× [0, α]). The down paraboloid which contains this
facet has an apex in Q(

√
2cαρ) × [0, α]. Consequently, thanks to (5.8), that down paraboloid is

included in Q × [0, α], which implies that the facet containing w and the (d − 1) other points is a
facet of the n-th layer of the peeling of P.

Step 3. Discretization of Wλ and lower bound for the variance. We are now ready to discretize Wλ

and isolate the good parallelepipeds from the discretization, according to the two previous steps.
We choose δ and ε which satisfy (5.7) with the choice ρ = 1. We take a large positive number

M and we partition
[
−λ

1
d+1

2 , λ
1
d+1

2

]d−1
into L :=

[
λ

1
d+1

M

]d−1
cubes Q1, . . . , QL. We consider the

cubes Qi satisfying the following properties:
(a) For each z ∈ (Zd−1∩ (Qi \Q(c)

i ))×{δ}, P ∩B(z, ε) is a singleton and is put on the n-th layer
using the tree construction associated with Tn,1 and the perturbation of each point by at most ε as
in Step 1.

(b) One of these two conditions holds:

1. For each z ∈ (Zd−1 ∩Q(c)
i )× {δ}, P ∩B(z, ε) is a singleton and this point is put on the n-th

layer as in property (a).

2. For each z ∈ ( 1
2Z

d−1 ∩Q(c)
i )×{δ}, P ∩B(z, ε) is a singleton and this point is put on the n-th

layer as before.
(c) Aside from the points described above, P has no point in Qi × [0, α].

After a possible relabeling, let I := {1, . . .K} be the indices of cubes partitioning
[
−λ

1
d+1

2 , λ
1
d+1

2

]d−1

that verify properties (a) to (c). Since any cube has a positive probability to verify these properties,
we have

E[K] ≥ cλ
d−1
d+1 . (5.10)

Let Fλ be the σ-algebra generated by I, the positions of points in Wλ \ (
⋃
i∈I Q

(c)
i × [0, α]) and the

scores ξ(∞)
n,k (x,P) at these points. For each i ∈ I we claim that

Var
[ ∑
x∈P∩(Qi×[0,α])

ξ
(∞)
n,k (x,P)

∣∣∣Fλ] = Var
[ ∑
x∈P∩(Q(3)

i
×[0,α])

ξ
(∞)
n,k (x,P)

∣∣∣Fλ] ≥ c0. (5.11)

Indeed, either condition (b1) or condition (b2) occurs in Q(c)
i × [0, α], each with positive probability.

Moreover, we observe that
∑
x∈P∩(Qi×[0,α]) ξ

(∞)
n,k (x,P) is larger when (b2) is satisfied. This is due

to the scaling result (5.9) which implies that the contribution of points inside Q(c)
i × [0, α] provides

a quantity almost 2d−1 times larger when (b2) is satisfied.
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Since only scores in ∪i∈IQi × [0, α] have any variability conditional on Fλ we get

Var[Ñn,k,λ] = Var[E[Ñn,k,λ|Fλ] + E[Var[Ñn,k,λ|Fλ]]
≥ E

[
Var

[
Ñn,k,λ|Fλ

]]
= E

[
Var
[∑
i∈I

∑
x∈P∩(Q(3)

i
×[0,α])

ξ
(∞)
n,k (x,P)

∣∣∣Fλ]].
Then the sums of scores in Q(c)

i × [0, α] and Q(c)
j × [0, α] for i 6= j are independent conditional on

Fλ since the scores in Q(c)
i × [0, α] only depend on points in Qi × [0, α]. Thus we can write

Var[Ñn,k,λ] ≥ E
[∑
i∈I

Var
[ ∑
x∈P∩(Qi×[0,α])

ξ
(∞)
n,k (x,P)

∣∣∣Fλ]]
≥ c0E[K]

≥ cλ
d−1
d+1 .

where the second inequality comes from (5.11) applied to each Qi and the last inequality comes
from (5.10). Thanks to (5.6), this proves the positivity of the limiting variance.

5.2 Results on intrinsic volumes
We define the score and two-point correlation function in the case of intrinsic volumes by fol-

lowing closely the method of [13, pp. 54–55], which relies on Kubota’s formula, see [34, equation
(6.11)]. For convenience, let us write convn,λ := convn(Pλ) and let us denote by κm the volume of
the m-dimensional unit ball. By Kubota’s formula applied to convn,λ, we get

Vk(convn,λ) = d!κd
k!κk(d− k)!κd−k

∫
G(d,k)

Volk(convn,λ|L)dνk(L) (5.12)

where νk is the normalized Haar measure on the k-th Grassmanian G(d, k) of Rd and convn,λ|L is
the orthogonal projection of convn,λ onto L. For every x ∈ Rd \ {0} we define ϑL(x, convn,λ) :=
1{x 6∈convn,λ|L} and the projection avoidance functionals

ϑk(x, convn,λ) :=
∫
G(lin[x],k)

ϑL(x, convn,λ)dνlin[x]
k (L)

where lin[x] is the linear space spanned by x, G(lin[x], k) is the set of all k-dimensional linear sub-
spaces of Rd containing lin[x] and νlin[x]

k is the normalized Haar measure on G(lin[x], k). Combining
(5.12) and Fubini’s theorem we can rewrite the defect k-th intrinsic volume of convn,λ as

Vn,k,λ =
(
d−1
k−1
)

κd−k

∫
Rd
ϑk(x, convn,λ) dx

|x|d−k
.

The functional Vn,k,λ can then be written as a sum of scores, i.e.

Vn,k,λ =
∑
x∈Pλ

ξV,n,k(x,Pλ)
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with

ξV,n,k(x,Pλ) :=
{ (d−1

k−1)
dκd−k

∫
conen(x,Pλ) ϑk(y, convn(Pλ ∪ {x})) dy

|y|d−k if x ∈ ∂convn,λ
0 otherwise

where conen(x,Pλ) := {ry : r > 0 and y ∈ Fn,d−1(x,Pλ)}. We denote by

ξ
(λ)
V,n,k(x,P(λ)) := λξV,k,λ([T (λ)]−1(x),Pλ) (5.13)

their rescaled counterparts, see [13, page 84] for an explanation on the factor λ. Let us explain how
to define the limit versions of the rescaled scores. For a point w = (v, h) ∈ Rd−1 ×R+ we write wl
for the set {v}×R+. We denote by A(wl, k) the set of all k-dimensional affine spaces in Rd−1×R+
containing wl. For any k and any affine space L ∈ A(wl, k) we define the orthogonal parabolic
volume

Π⊥(w,L) := (w ⊕ L⊥) ∩Π↓(w).

We put ϑ(∞)
n,L (w) = 1 if Π⊥(w,L) ∩ Φn(P) = ∅ and 0 otherwise. Then we define

ϑ
(∞)
n,k (w) :=

∫
A(wl,k)

ϑ
(∞)
n,L (w)dµwlk (L)

where µwlk is the normalized Haar measure on A(wl, k). We are finally able to define the limit score

ξ
(∞)
V,n,k(w,P) :=

(
d−1
k−1
)

dκd−k

∫
v-cone(F(∞)

n,d−1(w,P))
ϑ

(∞)
n,k (w′)dw′ (5.14)

where v-cone(F (∞)
n,d−1(w,P)) := {(v′, h′),∃h′′ : (v′, h′′) ∈ F (∞)

n,d−1(w)}.
For any λ ∈ (0,∞], the corresponding two-point correlation function is then defined by the

identity

c
(λ)
V,n,k((0, h0), (v1, h1))

:= E[ξ(λ)
V,n,k((0, h0),P(λ) ∪ {(v1, h1)})ξ(λ)

V,n,k((v1, h1),P(λ) ∪ {(0, h0)})]

− E[ξ(λ)
V,n,k((0, h0),P(λ))]E[ξ(λ)

V n,k((v1, h1),P(λ))]. (5.15)

Proof of Theorems 2.10 and 2.11.

Proof of the convergence of the normalized expectation and variance. The proofs of Theorems
2.10 and 2.11 go along the same lines as the proofs of Theorems 2.8 and 2.9 : after application of
Mecke’s formula and a suitable change of variables in the integral, we need to apply Lebesgue’s dom-
inated convergence theorem which requires the convergence of E[ξ(λ)

V,n,k(w,P(λ))],E[(ξ(λ)
V,n,k(w,P))2]

and c(λ)
V,n,k(w,w′) in the same spirit as in Propositions 4.3 and 4.4 as well as moment bounds similar

to those in Lemma 4.1. All these results rely on stabilization results identical to the tail estimates
in Propositions 3.6 and 3.7.

As an example, we explain how to adapt Proposition 3.6, Lemma 4.1 and Proposition 4.3 to get
the convergence of the expectation of ξ(λ)

V,n,k.
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We claim that as soon as H(λ)
n ((0, h0),P(λ)) ≤ r2

32 , the calculation of ξ(λ)
V,n,k only depends on the

set U defined at (3.39). Consequently, the radius of stabilization for ξ(λ)
V,n,k((0, h),P(λ)) is the same

as the one considered in Proposition 3.6.
To prove the moment bounds for ξ(λ)

V,n,k, we notice that ξ(λ)
V,n,k(0, h) is smaller than the volume

of C≤H(R) where R is the stabilization radius of ξ(λ)
V,n,k((0, h),P(λ)) and H = H

(λ)
n ((0, h),P(λ)).

Using Lemmas 3.5 and 3.6 as in the proof of Lemma 4.1, we deduce that for some c1, c2 > 0,

E
[
(ξ(λ)
V,n,k((0, h),P(λ)))p

]
≤ c1hp exp(−c2h

d+1
2 ).

These two ingredients allow us to prove the convergence of E[ξ(λ)
V,n,k(w,P(λ))] with the help of

the continuous mapping theorem as in Lemmas 4.2 and 4.3.

Proof of the positivity of the limiting constants for the intrinsic volumes. The defect intrinsic vol-
umes are increasing with respect to set inclusion. As the limiting constant is positive for conv1(P(λ))
[1, Theorem 3], it remains true for convn(Pλ).

It remains to prove that the limiting constant for the variance is positive. The strategy is the
same as the one that we used in the case of the k-faces. Because of the renormalization by λ in the
definition of ξ(λ)

V,n,k, see (5.13) , the equality (5.6) in the case of the volume scores becomes

lim
λ→∞

λ
d+3
d+1 Var[Vn,k,λ] = lim

λ→∞
λ−

d−1
d+1 Var[Ṽn,k,λ],

where Ṽn,k,λ :=
∑
w∈P∩Wλ

ξ
(∞)
V,n,k(w,P). The paragraph right after (5.6) details the rest of our

strategy. We repeat word for word the first two steps of the proof of the positivity of the limiting
variance on page 38, save for all the statements regarding Fn,k. In the sequel we use the notations
of the aforementioned proof and go directly to Step 3, i.e. the choice of the good configurations.

We discretize Wλ by decomposing it into parallelepipeds and isolate the good parallelepipeds
from the discretization as we have done for the k-faces. We choose δ and ε which satisfy (5.7) with

the choice ρ = 1. We take a large positive number M and we partition
[
−λ

1
d+1

2 , λ
1
d+1

2

]d−1
into

L :=
[
λ

1
d+1

M

]d−1
cubes Q1, . . . , QL. We consider the cubes Qi satisfying the following properties,

note that the main difference is the content of conditions b)1) and b)2):
(a) For each z ∈ (Zd−1∩ (Qi \Q(c)

i ))×{δ}, P ∩B(z, ε) is a singleton and is put on the n-th layer
using the tree construction associated with Tn,1 and the perturbation of each point by at most ε as
in Step 1.

(b) One of these two conditions holds:

1. For each z ∈ (Zd−1 ∩Q(c)
i )× {δ}, P ∩B(z, ε) is a singleton and this point is put on the n-th

layer as in property (a).

2. For each z ∈ (Zd−1 ∩ Q(c)
i ) × {δ/2}, P ∩ B(z, ε) is a singleton and this point is put on the

n-th layer as before.
(c) Aside from the points described above, P has no point in Qi × [0, α].
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After a possible relabeling, let I := {1, . . .K} be the indices of cubes partitioning
[
−λ

1
d+1

2 , λ
1
d+1

2

]d−1

that verify properties (a) to (c) and it remains true that

E[K] ≥ cλ
d−1
d+1 . (5.16)

Let Fλ be the σ-algebra generated by I, the positions of points in Wλ \ (
⋃
i∈I Q

(c)
i × [0, α]) and the

scores ξ(∞)
V,n,k(x,P) at these points. For each i ∈ I we claim that

Var
[ ∑
x∈P∩(Qi×[0,α])

ξ
(∞)
V,n,k(x,P)

∣∣∣Fλ] = Var
[ ∑
x∈P∩(Q(3)

i
×[0,α])

ξ
(∞)
V,n,k(x,P)

∣∣∣Fλ] ≥ c0. (5.17)

Again, either condition (b1) or condition (b2) occurs in Q(c)
i × [0, α], each with positive proba-

bility. To ensure that the remaining part of the proof for the k-faces works here as well, it remains
to prove that

∑
x∈P∩(Qi×[0,α]) ξ

(∞)
V,n,k(x,P) is larger when (b1) is satisfied. We do it when k = d,

i.e. in the case of the volume, as it contains all the ingredients needed to prove it for any intrinsic
volume but with slightly less technicality that would only obfuscate the ideas.

If each point z were deterministic in (Zd−1 ∩Q(c)
i )×{δ} or (Zd−1 ∩Q(c)

i )×{δ/2} then the n-th
layer in case (b2) would be a copy of the n-th layer in case (b1) at a lower height. The difference
of volume between the two cases (b1) and (b2) would thus be a constant times the difference of
height, i.e. cδ. In the general case when the points are random, since we can choose ε > 0 as small
as we want, we can make the difference of volume as close as needed to this deterministic situation.
Thus we can make sure that there exists a constant c > 0 such that

∑
x∈P∩(Qi×[0,α]) ξ

(∞)
n,k (x,P) in

situation (b2) is smaller than c times
∑
x∈P∩(Qi×[0,α]) ξ

(∞)
n,k (x,P) in situation (b1). Thus we have

proved (5.17).
The end of the proof follows along the same lines as in the case of the k-faces.

6 Concluding remarks
Let us conclude with a list of possible extensions of our results and related open problems.
— Other intensity measures. In [15], the convex hull of a Poisson point process with a Gaussian

intensity measure is studied. While the intensity of the process and therefore the rescaling
are different, the techniques that are used are very similar so these results should extend
to the n-th layer as we did in this paper for the uniform measure in the unit ball. We also
expect that our results extend to a stationary Poisson point process in any smooth convex
body as in [14] where the case of the first layer is treated. The n-th layer should have the
same behaviour as the first one in this case as well. However, [14] uses a sandwiching result
stating that with high probability the first layer lies between two floating bodies, see [27].
Such a result has not been proved for the n-th layer and would be interesting on its own.
The same kind of problem arises in [16] about the convex hull of the peeling of a uniform
point set in a polytope. Again, an argument on the sandwiching of the first layer is needed,
see [6]. An extension to the n-th layer inside a polytope will be the subject of a future work.
Finally, in [4] asymptotic results on the expected number of vertices of the convex hull of an
i.i.d. sample of an arbitrary non atomic probability distribution on Rd are derived from an
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approximation of the convex hull with floating bodies. We may hope that an approximation
of the same kind should be possible for the n-th layer.

— Invariance principles. Let us consider the processes defined as the integrated versions of the
defect support function and radius support function of each of the first layers. It is proved
in [13, Theorem 8.3] that in the case of the first layer, such processes when properly rescaled
and centered converge to a Brownian sheet process. We expect to get analogous functional
central limit theorems for subsequent layers as we think that the arguments, for both the
convergence of the finite-dimensional distributions and the tightness, should translate well
to the case of the n-th layer. This would certainly be more challenging to do so when the
number of the layer depends on λ, see below.

— Depoissonization. We left aside the case where we have a fixed number of i.i.d. random
points uniformly distributed in the unit ball, i.e. a binomial point process instead of a
Poisson point process. We expect a result of depoissonization in the spirit of [14, Theorem
1.2] and [17, Theorem 1.1] to occur.

— Optimal Berry-Esseen bounds. Recently, a method to derive central limit theorems for
stabilizing functionals has been derived in [26]. The case of the number of k-faces of a
convex hull of Poisson point processes in a smooth convex body is given as an application
with an improved rate of convergence, i.e. O

(
λ−

d−1
2(d+1)

)
instead of O

(
λ−

d−1
2(d+1) (log λ)3d+1

)
as in Theorem 1.1. We conjecture that the same rate of convergence should hold for the n-th
layer but extending the method from [26, Theorem 3.5] seems somehow challenging.

— Monotonicity. A monotonicity problem arises naturally from Theorem 1.1. Denoting by
Cn,k,d the limit obtained for the expectation in Theorem 1.1, we might wonder how the
constants Cn,k,d evolve with n. For k = 0, we expect that the sequence (Cn,0,d)n decreases
with n. This is what our simulations suggest. In general, monotonicity problems in random
polytopes are difficult, some insightful results on the monotonicity of the number of k-faces
of the convex hull when the number of points increases can be found in [20], [8] and [10].

— Other regimes. Until now we have only considered a fixed layer number n that does not
depend λ which means that we have only studied the first layers. It would be interesting
to study different regimes, where n would vary with λ. Thanks to [19] and [12] we know
that the expected number of layers is equivalent to λ

2
d+1 up to a constant. Thus a natural

regime to study would be the case where n = cλ
2
d+1 . Calder and Smart conjecture in [12]

that the mean number of points in this regime is still equivalent to λ
d−1
d+1 up to an explicit

constant. They provide in particular a heuristic argument and simulations that we were able
to reproduce.
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