Portfolio optimization under CV@R constraint with stochastic mirror descent - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Portfolio optimization under CV@R constraint with stochastic mirror descent

Résumé

This article studies and solves the problem of optimal portfolio allocation with CV@R constraints when dealing with imperfectly simulated financial assets. We use a Stochastic biased Mirror Descent to find optimal resource allocation for a portfolio whose underlying assets cannot be generated exactly and may only be approximated with a numerical scheme that satisfies suitable error bounds, under a risk management constraint. We establish almost sure asymptotic properties as well as the rate of convergence for the averaged algorithm. We then focus on the optimal tuning of the overall procedure to obtain an optimized numerical cost. Our results are then illustrated numerically on simulated as well as real data sets.
Fichier principal
Vignette du fichier
SMD_portfolio_06_13_submission.pdf (1.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03697232 , version 1 (16-06-2022)
hal-03697232 , version 2 (19-02-2024)

Identifiants

  • HAL Id : hal-03697232 , version 1

Citer

Manon Costa, Sébastien Gadat, Lorick Huang. Portfolio optimization under CV@R constraint with stochastic mirror descent. 2022. ⟨hal-03697232v1⟩
166 Consultations
129 Téléchargements

Partager

More