Decimations for One- and Two-dimensional Ising and Rotator Models II: Continuous versus Discrete Symmetries - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 2022

Decimations for One- and Two-dimensional Ising and Rotator Models II: Continuous versus Discrete Symmetries

Résumé

We show how decimated Gibbs measures which have an unbroken continuous symmetry due to the Mermin-Wagner theorem, although their discrete equivalents have a phase transition, still can become non-Gibbsian. The mechanism rests on the occurrence of a spin-flop transition with a broken discrete symmetry, once the model is constrained by the decimated spins in a suitably chosen "bad" configuration.
Fichier principal
Vignette du fichier
2206.06990.pdf (532.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03695701 , version 1 (15-06-2022)

Identifiants

Citer

Matteo D’achille, Aernout van Enter, Arnaud Le Ny. Decimations for One- and Two-dimensional Ising and Rotator Models II: Continuous versus Discrete Symmetries. Journal of Mathematical Physics, 2022, 63 (12), pp.123506. ⟨10.1063/5.0103163⟩. ⟨hal-03695701⟩
58 Consultations
36 Téléchargements

Altmetric

Partager

More