THE MAXIMAL GROWTH OF TORIC PERIODS AND OSCILLATORY INTEGRALS FOR MAXIMAL FLAT SUBMANIFOLDS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

THE MAXIMAL GROWTH OF TORIC PERIODS AND OSCILLATORY INTEGRALS FOR MAXIMAL FLAT SUBMANIFOLDS

Résumé

We prove a new omega result for toric periods of Hecke-Maass forms on compact locally symmetric spaces associated to forms of PGL(3). This is motivated by conjectures on the maximal growth of L-functions as well as by questions about the size of automorphic periods. We also prove a mean square asymptotic result for maximal flat periods on more general locally symmetric spaces of non-compact type, which takes as main input bounds for real relative orbital integrals.
Fichier principal
Vignette du fichier
maximal_size_of_periods.pdf (798.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03695051 , version 1 (14-06-2022)

Identifiants

Citer

Bart Michels. THE MAXIMAL GROWTH OF TORIC PERIODS AND OSCILLATORY INTEGRALS FOR MAXIMAL FLAT SUBMANIFOLDS. 2022. ⟨hal-03695051⟩
46 Consultations
36 Téléchargements

Altmetric

Partager

More