A generic interpretable fall detection framework based on low-resolution thermal images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

A generic interpretable fall detection framework based on low-resolution thermal images

Résumé

In this paper, we addressed the particularly challenging problem of fall detection using very low resolution thermal images. We proposed a new method for fall detection only based on the matches and a determined threshold. By classifying a pair of matched points on the ground or not on the ground, we could easily determine how many percent of the shape of a person is on the ground. Thus, we could determine if there is a fall or not. The experiments show that the method is able to classify features of human silhouette as one the ground or not on the ground.
Fichier principal
Vignette du fichier
JRI-2021_paper_9.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03694835 , version 1 (14-06-2022)

Identifiants

Citer

Yannick Wend Kuni Zoetgnande, Jean-Louis Dillenseger. A generic interpretable fall detection framework based on low-resolution thermal images. 4th edition of the Computer Science Research Days (JRI 2021), Nov 2021, Bobo-Dioulasso, Burkina Faso. ⟨10.4108/eai.11-11-2021.2317972⟩. ⟨hal-03694835⟩
18 Consultations
46 Téléchargements

Altmetric

Partager

More