An EM Algorithm for Mixtures of Hyperspheres - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

An EM Algorithm for Mixtures of Hyperspheres

Résumé

This paper studies a new expectation maximization (EM) algorithm to estimate the centers and radii of multiple hyperspheres. The proposed method introduces latent variables indicating to which hypersphere each vector from the dataset belongs to, in addition to random latent vectors having an a priori von Mises-Fisher distribution characterizing the location of each vector on the different hyperspheres. This statistical model allows a complete data likelihood to be derived, whose expected value conditioned on the observed data has a known distribution. This property leads to a simple and efficient EM algorithm whose performance is evaluated for the estimation of hypersphere mixtures yielding promising results.
Fichier principal
Vignette du fichier
revision_eusipco_2022v1.pdf (679.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03693951 , version 1 (13-06-2022)

Identifiants

  • HAL Id : hal-03693951 , version 1

Citer

Julien Lesouple, Philippe Burger, Jean-Yves Tourneret. An EM Algorithm for Mixtures of Hyperspheres. 30th European Signal Processing Conference (EUSIPCO 2022), European Association for Signal Processing (EURASIP), Aug 2022, Belgrade, Serbia. ⟨hal-03693951⟩
120 Consultations
137 Téléchargements

Partager

More