Space-Time Memory networks for multi-person skeleton body part detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Space-Time Memory networks for multi-person skeleton body part detection

Résumé

Deep CNNs have recently led to new standards in all fields of computer vision with specialized architectures for most challenges, including Video Object Segmentation and Pose Tracking. We extend Space-Time Memory Networks for the simultaneous detection of multiple object parts. This enables the detection of human body parts for multiple persons in videos. Results in terms of F1-score are satisfactory (a score of 47.6 with the best configuration evaluated on PoseTrack18 dataset) and encouraging for follow-up work.
Fichier principal
Vignette du fichier
Dufour_ICPRAI2022.pdf (2.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03686107 , version 1 (02-06-2022)

Identifiants

  • HAL Id : hal-03686107 , version 1

Citer

Rémi Dufour, Cyril Meurie, Olivier Lézoray, Ankur Mahtani. Space-Time Memory networks for multi-person skeleton body part detection. 3rd International Conference on Pattern Recognition and Artificial Intelligence ICPRAI 2022, Jun 2022, Paris, France. ⟨hal-03686107⟩
90 Consultations
64 Téléchargements

Partager

More