High-throughput tuning of ovarian cancer spheroids for on-chip invasion assays
Résumé
We developed an invasion assay by using microfabricated culture devices. First, ovarian tumor spheroids were generated with a culture patch device consisting of an agarose membrane formed with a honeycomb microframe – the patch – and gelatin nanofiber backbone. By changing the dimensions of the honeycomb compartments we were able to control the number of cells and size of the spheroids. When the spheroids were placed on a patch coated with a thin membrane of fibrillary type I collagen, spheroid disruption was observed due to substrate induced cell migration. This process is straightforward and should be applicable to other cancer types, as well as assays under microfluidic conditions, thereby holding the potential for use in tumor modeling and anti-cancer drug development.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|