A note on the global regularity results for strongly nonhomogeneous p, q-fractional problems and applications - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2022

A note on the global regularity results for strongly nonhomogeneous p, q-fractional problems and applications

Résumé

In this article, we communicate with the glimpse of the proofs of new global regularity results for weak solutions to a class of problems involving fractional (p,q)-Laplacian, denoted by (−∆)p$^{s1}$ + (−∆)q$^{s2}$ , for s2, s1 ∈ (0,1) and 1 < p,q < ∞. We also obtain the boundary Hölder continuity results for the weak solutions to the corresponding problems involving at most critical growth nonlinearities. These results are almost optimal. Moreover, we establish Hopf type maximum principle and strong comparison principle. As an application to these new results, we prove the Sobolev versus Hölder minimizer type result, which provides the multiplicity of solutions in the spirit of seminal work
Fichier principal
Vignette du fichier
2202.02546v1.pdf (191.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03684859 , version 1 (07-10-2024)

Identifiants

Citer

Jacques Giacomoni, Deepak Kumar, Konijeti Sreenadh. A note on the global regularity results for strongly nonhomogeneous p, q-fractional problems and applications. Comptes Rendus. Mathématique, 2022, 360 (G7), pp.809-817. ⟨10.5802/crmath.344⟩. ⟨hal-03684859⟩
32 Consultations
1 Téléchargements

Altmetric

Partager

More