NMMA: A nuclear-physics and multi-messenger astrophysics framework to analyze binary neutron star mergers - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2023

NMMA: A nuclear-physics and multi-messenger astrophysics framework to analyze binary neutron star mergers

Peter T.H. Pang
  • Fonction : Auteur
Tim Dietrich
  • Fonction : Auteur
Michael W. Coughlin
  • Fonction : Auteur
Mattia Bulla
  • Fonction : Auteur
Ingo Tews
  • Fonction : Auteur
Mouza Almualla
  • Fonction : Auteur
Tyler Barna
  • Fonction : Auteur
Nina Kunert
  • Fonction : Auteur
Gargi Mansingh
  • Fonction : Auteur
Brandon Reed
  • Fonction : Auteur
Niharika Sravan
  • Fonction : Auteur
Andrew Toivonen
  • Fonction : Auteur
Robert O. Vandenberg
  • Fonction : Auteur
Jack Heinzel
  • Fonction : Auteur
Vsevolod Nedora
  • Fonction : Auteur
Pouyan Salehi
  • Fonction : Auteur
Ritwik Sharma
  • Fonction : Auteur
Chris van den Broeck
  • Fonction : Auteur

Résumé

The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the NMMA (Nuclear-physics and Multi-Messenger Astrophysics) framework. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. It also enables us to classify electromagnetic observations, e.g., to distinguish between supernovae and kilonovae. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions. The extension of the NMMA code presented here is the first attempt of analysing the gravitational-wave signal, the kilonovae, and the GRB afterglow simultaneously, which reduces the uncertainty of our constraints. Incorporating all available information, we estimate the radius of a 1.4 solar mass neutron star to be $R=11.98^{+0.35}_{-0.40}$ km.
Fichier principal
Vignette du fichier
s41467-023-43932-6.pdf (1.81 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03684723 , version 1 (15-02-2024)

Licence

Identifiants

Citer

Peter T.H. Pang, Tim Dietrich, Michael W. Coughlin, Mattia Bulla, Ingo Tews, et al.. NMMA: A nuclear-physics and multi-messenger astrophysics framework to analyze binary neutron star mergers. Nature Communications, 2023, 14 (1), pp.8352. ⟨10.1038/s41467-023-43932-6⟩. ⟨hal-03684723⟩
46 Consultations
28 Téléchargements

Altmetric

Partager

More