Linear elliptic homogenization for a class of highly oscillating non-periodic potentials - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2024

Linear elliptic homogenization for a class of highly oscillating non-periodic potentials

Résumé

We consider an homogenization problem for the second order elliptic equation $- \Delta u^{\varepsilon} + \dfrac{1}{\varepsilon} V(./\varepsilon) u^{\varepsilon} + \nu u^{\varepsilon} =f$ when the highly oscillatory potential $V$ belongs to a particular class of non-periodic potentials. We show the existence of an adapted corrector and prove the convergence of $u^{\varepsilon}$ to its homogenized limit.

Dates et versions

hal-03684614 , version 1 (01-06-2022)

Identifiants

Citer

Rémi Goudey, Claude Le Bris. Linear elliptic homogenization for a class of highly oscillating non-periodic potentials. SIAM Journal on Mathematical Analysis, 2024, 56 (2), pp.2738-2782. ⟨10.1137/22M1504275⟩. ⟨hal-03684614⟩
86 Consultations
0 Téléchargements

Altmetric

Partager

More