Article Dans Une Revue Computer Graphics Forum Année : 2022

Harmonics Virtual Lights: Fast Projection of Luminance Field on Spherical Harmonics for Efficient Rendering

Résumé

In this paper, we introduce Harmonics Virtual Lights (HVL), to model indirect light sources for interactive global illumination of dynamic 3D scenes. Virtual Point Lights (VPL) are an efficient approach to define indirect light sources and to evaluate the resulting indirect lighting. Nonetheless, VPL suffer from disturbing artifacts, especially with high-frequency materials.Virtual Spherical Lights (VSL) avoid these artifacts by considering spheres instead of points but estimates the lighting integral using Monte-Carlo which results to noise in the final image. We define HVL as an extension of VSL in a Spherical Harmonics (SH) framework, defining a closed form of the lighting integral evaluation. We propose an efficient SH projection of spherical lights contribution faster than existing methods. Computing the outgoing luminance requires O(n) operations when using materials with circular symmetric lobes, and O(n²) operations for the general case, where n is the number of SH bands. HVL can be used with either parametric or measured BRDF without extra cost and offers control over rendering time and image quality, by either decreasing or increasing the band limit used for SH projection. Our approach is particularly well-designed to render medium-frequency one-bounce global illumination with arbitrary BRDF at interactive frame rate.
Fichier principal
Vignette du fichier
HVL.pdf (16.13 Mo) Télécharger le fichier
HVL_supplemental.pdf (15.5 Mo) Télécharger le fichier
HVL_video.mp4 (158.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03679979 , version 1 (27-05-2022)

Licence

Identifiants

Citer

Pierre Mézières, François Desrichard, David Vanderhaeghe, Mathias Paulin. Harmonics Virtual Lights: Fast Projection of Luminance Field on Spherical Harmonics for Efficient Rendering. Computer Graphics Forum, 2022, 41 (6), pp.182-195. ⟨10.1111/cgf.14564⟩. ⟨hal-03679979⟩
355 Consultations
237 Téléchargements

Altmetric

Partager

More