Weakly Supervised Word Segmentation for Computational Language Documentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Weakly Supervised Word Segmentation for Computational Language Documentation

Segmentation en mot faiblement supervisée: un outil pour la linguistique de terrain

Shu Okabe
Laurent Besacier
François Yvon

Résumé

Word and morpheme segmentation are fundamental steps of language documentation as they allow to discover lexical units in a language for which the lexicon is unknown. However, in most language documentation scenarios, linguists do not start from a blank page: they may already have a pre-existing dictionary or have initiated manual segmentation of a small part of their data. This paper studies how such a weak supervision can be taken advantage of in Bayesian non-parametric models of segmentation. Our experiments on two very low resource languages (Mboshi and Japhug), whose documentation is still in progress, show that weak supervision can be beneficial to the segmentation quality. In addition, we investigate an incremental learning scenario where manual segmentations are provided in a sequential manner. This work opens the way for interactive annotation tools for documentary linguists.
Fichier principal
Vignette du fichier
2022.acl-long.510.pdf (326.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03679416 , version 1 (26-05-2022)

Identifiants

  • HAL Id : hal-03679416 , version 1

Citer

Shu Okabe, Laurent Besacier, François Yvon. Weakly Supervised Word Segmentation for Computational Language Documentation. Annual meeting of the Association for Computational Linguistics, Association for Computational Linguistics, May 2022, Dublin, Ireland. ⟨hal-03679416⟩
185 Consultations
127 Téléchargements

Partager

More