CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies

Fernando Llorente
  • Fonction : Auteur
  • PersonId : 1134980
Rim Kaddah
  • Fonction : Auteur
  • PersonId : 1274688
  • IdHAL : kaddahri
Luca Martino
  • Fonction : Auteur
  • PersonId : 1134979

Résumé

Reinforcement Learning has drawn huge interest as a tool for solving optimal control problems. Solving a given problem (task or environment) involves converging towards an optimal policy. However, there might exist multiple optimal policies that can dramatically differ in their behaviour; for example, some may be faster than the others but at the expense of greater risk. We consider and study a distribution of optimal policies. We design a curiosity-augmented Metropolis algorithm (CAMEO), such that we can sample optimal policies, and such that these policies effectively adopt diverse behaviours, since this implies greater coverage of the different possible optimal policies. In experimental simulations we show that CAMEO indeed obtains policies that all solve classic control problems, and even in the challenging case of environments that provide sparse rewards. We further show that the different policies we sample present different risk profiles, corresponding to interesting practical applications in interpretability, and represents a first step towards learning the distribution of optimal policies itself.
Fichier principal
Vignette du fichier
CAMEO Curiosity Augmented Metropolis for Exploratory Optimal Policies.pdf (848.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03675575 , version 1 (23-05-2022)
hal-03675575 , version 2 (14-02-2023)

Identifiants

  • HAL Id : hal-03675575 , version 2

Citer

Simo Alami, Fernando Llorente, Rim Kaddah, Luca Martino, Jesse Read. CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies. EUSIPCO, Aug 2022, Belgrade, Serbia. ⟨hal-03675575v2⟩
148 Consultations
50 Téléchargements

Partager

More