Towards generic quality assessment of synthetic traffic for evaluating intrusion detection systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Towards generic quality assessment of synthetic traffic for evaluating intrusion detection systems

Résumé

Network Intrusion Detection Systems (NIDSes) evaluation requires background traffic. However, real background traffic is hard to collect. We hence rely on synthetic traffic generated especially for this task. The quality of the generated traffic has to be evaluated according to some clearly defined criteria. In this paper, we show how to adapt the quality assessment solutions proposed for different fields of data generation such as image or text generation to network traffic. We summarize our study by discussing the criteria that evaluate the quality of a generated network traffic and by proposing functions to evaluate these criteria. This is the first contribution in the context of the Ph.D. thesis of Adrien Schoen.
Fichier principal
Vignette du fichier
tmp13_94k46_HowToEvaluateNetworkTrafficGeneration.pdf (110.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03675359 , version 1 (23-05-2022)

Identifiants

  • HAL Id : hal-03675359 , version 1

Citer

Adrien Schoen, Gregory Blanc, Pierre-François Gimenez, Yufei Han, Frédéric Majorczyk, et al.. Towards generic quality assessment of synthetic traffic for evaluating intrusion detection systems. RESSI 2022 - Rendez-Vous de la Recherche et de l'Enseignement de la Sécurité des Systèmes d'Information, May 2022, Chambon-sur-Lac, France. pp.1-3. ⟨hal-03675359⟩
198 Consultations
200 Téléchargements

Partager

More