Modelling stars with Gaussian Process Regression: augmenting stellar model grid - Archive ouverte HAL
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2022

Modelling stars with Gaussian Process Regression: augmenting stellar model grid

Tanda Li
  • Fonction : Auteur
Guy Davies
  • Fonction : Auteur
Alexander Lyttle
Warrick Ball
Lindsey Carboneau
  • Fonction : Auteur

Résumé

Grid-based modelling is widely used for estimating stellar parameters. However, stellar model grid is sparse because of the computational cost. This paper demonstrates an application of a machine-learning algorithm using the Gaussian Process (GP) Regression that turns a sparse model grid on to a continuous function. We train GP models to map five fundamental inputs (mass, equivalent evolutionary phase, initial metallicity, initial helium fraction, and the mixing-length parameter) to observable outputs (effective temperature, surface gravity, radius, surface metallicity, and stellar age). We test the GP predictions for the five outputs using off-grid stellar models and find no obvious systematic offsets, indicating good accuracy in predictions. As a further validation, we apply these GP models to characterize 1000 fake stars. Inferred masses and ages determined with GP models well recover true values within one standard deviation. An important consequence of using GP-based interpolation is that stellar ages are more precise than those estimated with the original sparse grid because of the full sampling of fundamental inputs.
Fichier principal
Vignette du fichier
stac467.pdf (6.47 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03673986 , version 1 (21-03-2023)

Licence

Identifiants

Citer

Tanda Li, Guy Davies, Alexander Lyttle, Warrick Ball, Lindsey Carboneau, et al.. Modelling stars with Gaussian Process Regression: augmenting stellar model grid. Monthly Notices of the Royal Astronomical Society, 2022, 511 (4), pp.5597-5610. ⟨10.1093/mnras/stac467⟩. ⟨hal-03673986⟩
27 Consultations
49 Téléchargements

Altmetric

Partager

More