
HAL Id: hal-03673986
https://hal.science/hal-03673986

Submitted on 21 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modelling stars with Gaussian Process Regression:
augmenting stellar model grid

Tanda Li, Guy Davies, Alexander Lyttle, Warrick Ball, Lindsey Carboneau,
Rafael A. García

To cite this version:
Tanda Li, Guy Davies, Alexander Lyttle, Warrick Ball, Lindsey Carboneau, et al.. Modelling stars
with Gaussian Process Regression: augmenting stellar model grid. Monthly Notices of the Royal
Astronomical Society, 2022, 511 (4), pp.5597-5610. �10.1093/mnras/stac467�. �hal-03673986�

https://hal.science/hal-03673986
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MNRAS 511, 5597–5610 (2022) https://doi.org/10.1093/mnras/stac467 
Advance Access publication 2022 February 21 

Modelling stars with Gaussian Process Regression: augmenting stellar 

model grid 

Tanda Li, 1 ‹ Guy R. Davies, 1 Alexander J. Lyttle , 1 Warrick H. Ball , 1 Lindsey M. Carboneau 

1 

and Rafael A. Garc ́ıa 

2 

1 School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK 

2 AIM, CEA, CNRS, Universit ́e Paris-Saclay, Universit ́e Paris Diderot, Sorbonne Paris Cit ́e, F-91191 Gif-sur-Yvette, France 

Accepted 2022 February 16. Received 2022 February 14; in original form 2022 January 20 

A B S T R A C T 

Grid-based modelling is widely used for estimating stellar parameters. Ho we ver, stellar model grid is sparse because of the 
computational cost. This paper demonstrates an application of a machine-learning algorithm using the Gaussian Process (GP) 
Regression that turns a sparse model grid on to a continuous function. We train GP models to map five fundamental inputs 
(mass, equi v alent e volutionary phase, initial metallicity, initial helium fraction, and the mixing-length parameter) to observable 
outputs (ef fecti ve temperature, surface gravity, radius, surface metallicity, and stellar age). We test the GP predictions for the 
five outputs using off-grid stellar models and find no obvious systematic offsets, indicating good accuracy in predictions. As 
a further validation, we apply these GP models to characterize 1000 f ak e stars. Inferred masses and ages determined with GP 

models well reco v er true v alues within one standard de viation. An important consequence of using GP-based interpolation is 
that stellar ages are more precise than those estimated with the original sparse grid because of the full sampling of fundamental 
inputs. 

Key words: methods: statistical – stars: evolution – stars: statistics. 
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 I N T RO D U C T I O N  

heoretical stellar model has been developed for decades to simulate 
tar structure and evolution. Star modelling is mostly grid based 
e.g. Choi et al. 2016 ) because computing many stellar models are
ime consuming especially when a number of free input parameters 
re considered. Varying one of these adjusted parameters (mass, 
etallicity, helium fraction, mixing-length parameter, etc.) adds on 

n input dimension and hence exponentially increases the computa- 
ional cost. 

A sparse grid is not ideal for the statistics analysis. Classical
nterpolation method has been applied to o v ercome this disadvantage. 
or instance, Dotter ( 2016 ) applied a method to transform stellar
volution tracks on to a uniform basis and then interpolate to construct 
tellar isochrones. More recently, Rendle et al. ( 2019 ) uses Bayesian
tatistics and a Markov Chain Monte Carlo approach to find a rep-
esentative set of interpolated models from a grid. Their approaches 
ased on multi v ariate linear interpolation achie v e good accurac y
or three-dimension girds (inputs are mass, age, and metallicity). 
o we ver, it has not been studied in detail for higher-dimension grid.
 or e xample, Nsamba et al. ( 2021 ) interpolated a five-dimension
tellar model grid to study the initial helium ab undance, b ut they
id not present an analysis of the interpolation uncertainties. The 
ifficulty in applying the classical interpolation method to the high 
imension problem is the choice of the function form. Stellar tracks 
o not follow the same scale function through all dimensions and all
 E-mail: t.li.2@bham.ac.uk 
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arameter ranges. For instance, the evolutionary tracks on the HR 

iagram changes its shape at the mass of ∼1.1 M � because of the
witch between radiative and convective core. In this mass range, 
sing the linear interpolation would not give good predictions for 
tellar models about the blue hook. 

Compared with the classical interpolation with specific function 
orm, the machine-learning tools can offers flexible functional forms 
o handle high-dimension problems. Machine learning is being 
pplied to the field of stellar research in many ways to efficiently
haracterize stars. Verma et al. ( 2016 ) applied artificial neural
etwork, which is a series of algorithms that endea v ours to recognize
nderlying relationships in a set of data, to determine the evolutionary 
arameters of the sun and sun-like stars based on spectroscopic 
nd seismic measurements. Using a similar artificial neural network 
nterference, Hendriks & Aerts ( 2019 ) developed a method to provide
he optimal starting point of model competitions for more detailed 
orward asteroseismic modelling. Moreo v er, Mombarg, Van Reeth & 

erts ( 2021 ) trained neural networks to predict theoretical pulsation
eriods of high-order gravity modes, as well as the luminosity, 
f fecti ve temperature, and surface gravity for a given mass, age,
 v ershooting parameter, dif fusi v e env elope mixing, metallicity, and
ear-core rotation frequency. Using different machine learning tools, 
ellinger et al. ( 2016 ) trained a random forest regressors (Ho 1995 ),
hich is an ensemble learning method for regression and operates 
y constructing a multitude of decision trees, to rapidly estimate 
undamental parameters of solar-like stars based on classical and 
steroseismic observations. Hon, Stello & Yu ( 2018 ) developed a
onvolutional neural network classifier that analyses visual features 
n asteroseismic frequency spectra to distinguish between red giant 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. Computation of stellar model grid. 

Primary data set 
Input parameter Range Increment 

M (M �) 0.80–1.20 0.01 
[Fe / H] (dex) −0.5–0.2/0.2–0.5 0.1/0.05 
Y init 0.24–0.32 0.02 
αMLT 1.7–2.5 0.2 

Additional data set 
Input parameter Range Increment 
M (M �) 1.055–1.195 0.01 
[Fe / H] (dex) 0.25–0.45 0.1 
Y init 0.25–0.31 0.02 
αMLT 1.8–2.4 0.2 
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ranch stars and helium-core burning stars. Wu et al. ( 2019 ) deter-
ined masses and ages for massive RGB stars from their spectra with
 machine-learning method based on kernel principal component
nalysis, which is a non-linear form of principal component analysis
sing integral operator kernel functions and can efficiently compute
rincipal components in high-dimensional feature spaces related to
nput space by some non-linear map (Sch ̈olkopf, Smola & M ̈uller
997 ). Hon et al. ( 2020 ) applied the mixture density network (Bishop
994 ), which learns a transformation from a set of input variables to a
et of output variable to determine stars’ fundamental parameters like
ass and age based on observed mode frequencies, spectroscopic,

nd global seismic parameters. 
In abo v e studies, the discriminativ e machine-learning model is
ostly used. The discriminative model treats observables as given

acts to directly infer star fundamental parameters. The method is
fficient and easy for computation, while the downside is not allowing
ny priors for star properties like mass. In an opposite direction,
he generative machine-learning model uses the star fundamental
arameters as given facts to predict observables. This approach
ffers flexibility to prior fundamental parameters in the sampling.
or instance, Lyttle et al. ( 2021 ) determined initial helium fraction
nd mixing-length parameters for a sample of Kepler dwarfs and
ubgiants with an artificial neural network to provide the generative
odel. This allowed them to prescribe prior distributions o v er the

undamental stellar parameters and, by e xtension, o v er population-
evel parameters such as a helium enrichment law. Priors encode our
urrent knowledge and assumptions into inference from new data.
his is especially important with noisy observations which span a

arge portion of parameter space. 
Constructing a comprehensive and fine model grid is computation-

lly e xpensiv e. In this work, we aim to apply the machine-learning
ool to transform a sparse model grid on to a continuous function.

e apply a machine-learning algorithm that involves a Gaussian
rocess (GP) that measures the similarity between data points (i.e.

he kernel function) to predict values for unseen points from training
ata. We use the generative model and treat fundamental parameters,
s given facts to predict observables. This gives us flexibility to
rior fundamental inputs when modelling stars. We organize the
est of the paper as follow. Section 2 contents descriptions about the
omputation of a representative stellar model grid. We then introduce
he underlying theory of GP and the set-up of GP model in Section 3 .

e then demonstrate some preliminary studies for low-dimension
roblems in Section 4 . Section 5 demonstrates GP predictions and
heir systematic uncertainties. Subsequently, we augment the grid to
ave a set of continuously sampled stellar models and model 1000
 ak e stars for testing the accuracy of our method in Section 6 . Lastly,
e discuss advantages and limitations of this approach, highlight

reas where impro v ements can be found in the near future, and
ummary conclusions in Section 7 . 

 REPRESEN TATIVE  M O D E L  G R I D  

.1 Grid computation 

e compute a stellar model grid as the training data set. We aim
o co v er stars with approximate solar mass on the main-sequence
nd the subgiant phases. We consider four independent fundamental
nputs which are stellar mass ( M ), initial helium fraction ( Y init ), initial

etallicity ([Fe/H] init ), and the mixing-length parameter ( αMLT ). We
alculated three model data set for different purposes. The primary
ata set is a standard model grid with uniform mass step. This model
rid is used for all preliminary tests and also for the final training. We
NRAS 511, 5597–5610 (2022) 
lso calculate an additional data set to increase the grid resolution
or M > 1.05 M �, because we find that the blue hook feature (where
lobal parameters sharply vary) is relatively hard to train. This data
et is only used in the final training. Details of parameter ranges
nd steps of the two grids are listed in Table 1 . For validating and
esting GP predictions, we computed off-grid models with randomly
ampled fundamental inputs as a third data set. The computation
f evolutionary tracks starts at the Hayashi line with pre-main-
equence central temperature at 300 000 K and terminates at the base
f red-giant branch (RGB) where log g = 3.6 dex. Note that we
nly use models after the zero-age-main-sequence (ZAMS), which
s defined as the point where core-hydrogen burning contributes o v er
9.9 per cent of the total luminosity. 

.2 Input physics 

e use the stellar code Modules for Experiments in Stellar As-
rophysics ( MESA , version 12115) to construct stellar grids. MESA

s an open-source stellar evolution package which is undergoing
cti ve de velopment. Descriptions of input physics and numerical
ethods can be found in Paxton et al. ( 2011 ) and Paxton et al.

 2013 , 2015 ). We adopted the solar chemical mixture [(Z/X) �
 0.0181] provided by Asplund et al. ( 2009 ). The initial helium

raction ( Y init ) and initial metallicity ( [Fe / H] init ) are both independent
nputs. 

We use the MESA ρ − T tables based on the 2005 update of
PAL EOS tables (Rogers & Nayfonov 2002 ) and OPAL opacity

upplemented by low-temperature opacity (Ferguson et al. 2005 ).
he grey Eddington T −τ relation is used to determine boundary
onditions for modelling the atmosphere. The mixing-length theory
s implemented and the convection is adjusted by the mixing-length
arameter ( αMLT ). We also apply the MESA conv ectiv e premixing
cheme (Paxton et al. 2019 ), which an approach to handling mixing
n convection zones that impro v es model structures at the conv ectiv e
oundary. Atomic diffusion of helium and heavy elements was
lso taken into account. MESA calculates particle diffusion and
ravitational settling by solving Burger’s equations using the method
nd dif fusion coef ficients of Thoul, Bahcall & Loeb ( 1994 ) as well
s radiative turbulence formula given by Morel & Th ́evenin ( 2002 ).
e consider eight elements ( 1 H, 3 He, 4 He, 12 C, 14 N, 16 O, 20 Ne,

nd 24 Mg) for diffusion calculations, and have the charge calculated
y the MESA ionization module, which estimates the typical ionic
harge as a function of T , ρ, and free electrons per nucleon from
aquette et al. ( 1986 ). We only compute diffusion during the main-
equence stage before the central hydrogen abundance drops below
.05, because its effects can be neglected in post-main-sequence
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Figure 1. Surface plots of model ef fecti ve temperature on the mass-fractional age (left) and mass-EEP (right) diagrams. Models in this figure are from the 
primary grid with fixed initial metallicity ([Fe / H] init = 0.0), helium fraction ( Y init = 0.28), and mixing-length parameter ( αMLT = 2.1). It can be seen that the 
ef fecti ve temperature changes much smoother on the mass-EEP diagram at the blue hook and turn-off points. 
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tages. The MESA enlistment used for the computation is available 
n ht tps://github.com/lit anda/mesa inlist/. 

.3 Equi v alent ev olutionary phase 

part from the four independent model inputs, i.e. mass, metallicity, 
elium fraction, and the mixing-length parameter, stellar age is the 
fth fundamental input. Ho we ver, the dynamical range of age varies

rack by track. This makes GP models hard to map from age to
lobal parameters. We need a uniform input to replace the age. The
ractional age is an option but we find that global parameters (e.g.
f fecti ve temperature) sharply change with the fractional age around 
he blue hook and the turn-off point (as shown in the left-hand
anel in Fig. 1 ). It requires a complex and spiky kernel function
o fit the curvatures in this area and hence difficult for GP to
earn. A quantity equi v alent e volutionary phase ( EEP ) has been
ntroduced in some model data bases like BaSTI, PARSEC, and 

IST (Bressan et al. 2012 ; Dotter 2016 ; Hidalgo et al. 2018 ). The
EP numbers evolutionary stages and transform stellar tracks for 
ifferent masses on to a uniform basis. We follow this idea but define
EP in a different way to make global parameters change relatively 
moothly. On each evolutionary track, we compute the displacement 
etween consecutive models on the log T eff −log g diagram. For
nstance, the displacement between model n and model n − 1 can be
alculated as 

d n = (( log T eff, n − log T eff, n −1 ) 
2 + 

(
log g n − log g n −1 ) 

2 
)c 

, (1) 

here c is an adjusted parameter to scale the displacement. The total
isplacement of model n from the ZAMS (model 0) can be calculated
ith 

 n = 

i= n ∑ 

i= 1 

δd i . (2) 

e then normalize d n to the 0–1 range and define it as EEP . On
n evolutionary track, EEP equals to 0 at the ZAMS and 1 on the
GB where log = 3.6 dex. The factor c in equation ( 1 ) is introduced

or modulating EEP because the track step on the log T eff −log g
iagram is not uniform. To a v oid obvious data gaps, we test some
ases and find that c = 0.18 gives the most uniform data distribution.
n Fig. 1 , we demonstrate how the ef fecti ve temperature changes with
ractional age and EEP . It can be seen that EEP is a better choice
han the fractional age because global parameters change smoother 
round the blue hook and the turn-off point. 

.4 Sampling method 

here is a limitation of the data size in the GP framework, because
he computational and memory complexity exponentially increase 
ith the number of data points. In practice, the typical data size is
n an order of 10 4 . Given that the grid contains ∼ 10 000 000 stellar
odels, only a small subset can be used for training. The sampling
ethod is hence important. A flat sampling is not appropriate, 

ecause the evolving step is not uniform at different evolutionary 
tages due to the MESA step-control strate gy. F or instance, stellar
odels are dense at the main-sequence and lower RGB but quite

parse at the subgiant stage. We test a few methods and find that
sing the displacement ( δd n ) defined in equation ( 1 ) as the weight to
ample models on an evolutionary track gives a relatively uniform 

ata distribution at different evolutionary stages. 

 GAUSSI AN  PROCESS  M O D E L  

 GP can be applied as a probabilistic model to a regression
roblem. Here we use the GP model to generalize a stellar model
rid to a continuous and probabilistic function that maps inputs to
bserv able quantities. This allo ws us to predict observable quantities
or off-grid regions. We intend to train GP models that maps five
undamental inputs, i.e. mass ( M ), initial metallicity ([Fe/H] init ),
nitial helium fraction ( Y init ), the mixing-length parameter ( αMLT ),
nd equi v alent e volutionary phase ( EEP ), to five model outputs
ncluding ef fecti ve temperature ( T eff ), surface gravity (log g ), radius
 R ), surface metallicity ([Fe/H]), and stellar age ( τ ). We only choose
hree global parameters ( T eff , log g , R ) as GP outputs because this
ork is mainly for demonstrating and testing the method. Other 
lobal parameters like the luminosity and the seismic large separation 
an also be trained and predicted. Ho we v er, because man y global
MNRAS 511, 5597–5610 (2022) 
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uantities are correlated to others, examining consistences of their
redictions are necessary. We use the GP model as a non-parametric
mulator, that is emulating the comparatively slow calls to models
f stellar evolution. This emulator can be described as a function
pproximation problem. In fact, the way we have implemented the
P as function approximation means that we have used one GP for

ach of the outputs so that they can be described as 

 eff = f T eff ( M, EEP , [Fe / H] init , Y init , αMLT ) , (3) 

og g = f log g ( M, EEP , [Fe / H] init , Y init , αMLT ) , (4) 

 = f R ( M, EEP , [Fe / H] init , Y init , αMLT ) , (5) 

Fe / H] = f [Fe / H] ( M, EEP , [Fe / H] init , Y init , αMLT ) , (6) 

nd 

= f τ ( M, EEP , [Fe / H] init , Y init , αMLT ) . (7) 

n the following, we introduce the underlying theory of GP regression
nd the set-up of training GP models. 

.1 Gaussian process application 

n our application to a stellar model grid, a GP has a number
f desirable properties. While a GP is a stochastic process, the
istribution of a GP can be considered as a distribution of functions
ith a continuous domain. In fact, the marginal likelihood considered

n function space is equal to the likelihood of the data given some
unction values, multiplied by the prior on those function values
arginalized o v er all function values (Williams & Rasmussen 1996 ).
hat is to say that, the GP allows for the analytical evaluation of a fit
 v er man y different functions (perhaps an infinite number) weighted
y some concept of a prior and the agreement with the data. In
ddition, while the marginal likelihood will be assessed on discrete
ata, predictions can be made using linear algebra for new data in
he continuous domain, but crucially again marginalized o v er these
any different functional forms. It is possible to see how this might

e useful for generalizing (or emulating or augmenting) a discrete
rid of stellar models in order to obtain predictions in the continuous
omain. 
In this section, we will look at the required mathematics to be able

o implement a GP for our application to grids of stellar models. We
tart with a series of definitions before dealing with the marginal
ikelihood and the posterior predictive distributions. 

We start with a grid of stellar models containing N models with
 label we want to learn, for example model ef fecti ve temperature,
hich we will denote with the general symbol y , and a set of on-grid

nputs X (e.g. mass, EEP , metallicity,...). We can use a GP to make
redictions of the ef fecti ve temperature (labelled y ) for additional off-
rid input values given by X � . The vector y is arranged y = ( y i ,...,
 N ) T , where the subscript label references the stellar model. The input
abels are arranged into a N × D matrix where D is the number of
nput dimensions (e.g. D = 3 for mass, EEP , and metallicity) so that
 = ( x 1 ,..., x N ) T where x i = ( x 1, i ,..., x D , i ) T . The matrix of additional

nputs X � has the same form as X but size N � × D . 
Williams & Rasmussen ( 1996 ), from which our description below

s based, define a GP as a collection of random variables, where any
nite number of which have a joint Gaussian distribution. In general

erms, a GP may be written so that our on grid labels are random
ariables drawn from our GP distribution, 

y ( X ) ∼ GP ( m ( X ) , � ) , (8) 
NRAS 511, 5597–5610 (2022) 
here m ( X ) is some mean function, and � is some covariance matrix.
he mean function controls the deterministic part of the regression
nd the covariance function controls the stochastic part. The mean
unction defined here could be any deterministic function and we will
abel the additional parameters, or hyperparameters, φ. Each element
f the more familiar covariance matrix is defined by the covariance
unction or kernel function K which has hyperparameters θ and is
iven by, 

 = K ( X , X , θ ) , (9) 

r 

 n,m 

= k( X n , X m 

, θ ) , (10) 

here the inputs X n and X n are D -dimensional vectors and the output
s a scalar covariance. In addition to the covariance defined by the
ernel function, we include additional white noise in the covariance
atrix by adding an identity matrix I multiplied by a scalar value
2 
w , so that, 

 = K ( X , X , θ ) + σ 2 
w I, (11) 

here σ 2 
w is another hyperparameter to be learnt during training. 

.1.1 The likelihood 

onceptually, we value the GP because of its ability to marginalize
 v er man y functions f and return a marginal likelihood, 

( y | X ) = 

∫ 

p( y | f , X ) p( f | X ) d f , (12) 

oting that this function space marginal likelihood is weighted by the
robability of the data given the function and the probability of the
unction. This integral could be e v aluated. Ho we ver, by noting that
 GP is a collection of random variables, where any finite number
f which have a joint Gaussian distribution, the marginal probability
f our data y is also the joint likelihood of a multi v ariate normal
istribution, 

( y | X ) = N ( m ( X ) , �) , (13) 

hich can be straightforward to e v aluate. Thus, the marginal likeli-
ood is, 

( y | X ) = (2 π) k/ 2 det ( � ) −0 . 5 exp 

(−1 

2 
( X − m ( X )) T � 

−1 ( X − m ( X )) 

)
, (14) 

hich can be e v aluated without integrating over all possible function
pace. While this marginal likelihood expression is clearly more
omputationally feasible that the integral over functional space is
ot without its limitations. Because it is necessary to calculate
he determinant and the inverse of the covariance matrix, typically
pplied algorithms, make this a O( N 

3 ) or O( N 

2 log N ) operation.
his naturally limits the size of the data set for which the likelihood,
nd optimizations of the likelihood, can be applied. 

.1.2 Making predictions 

f we want to obtain predictive distributions for the output y � given the
nputs X � , the joint probability distribution of y and y � is Gaussian
nd given by 

 

([
y 
y � 

])
= N 

([
m ( X ) 
m ( X � ) 

]
, 

[
� K � 

K � 
T K �� 

])
, (15) 

here the covariance matrices � and K are computed using the
ernel function, so that 

 n,m 

= k( X n , X m 

) , (16) 
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Figure 2. GP application on 1D problem. Models on this track are split 
into training and testing data by 70-to-30. Top: The evolution of effective 
temperature for a 1 . 1M � track. The grey line is the evolutionary track 
computed with MESA ; blue and red circles indicate predictions for the testing 
data from the quadratic interpolator and the GP model. Bottom: Residuals of 
predictions in the top graph. 
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Figure 3. Top: The 2D GP model for T eff . Bottom: probability distributions 
of validating errors of the GP model. 
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hich is an N × N matrix 

K � n,m 

= k( X n , X � m 

) , (17) 

hich is an N × N � matrix, and finally 

K �� n,m 

= k( X � n , X � m 

) , (18) 

hich is an N � × N � matrix. The predictions of y � are again a
aussian distribution, so that 

y � ∼ N ( ̂  y � , C ) , (19) 

here 

ˆ y � = m ( X � ) + K 

T 
� � 

−1 ( y − m ( X )) , (20) 

nd 

 = K �� − K 

T 
� � 

−1 K � . (21) 

At this point, we can make predictions on model properties, given 
 grid of stellar models using equation ( 19 ). But these predictions
ill likely be poor unless we select sensible values for the form and
yperparameters of the mean function and covariance function. In 
he following section, we detail a number of kernel functions that 
ill be tested against the data. We will then discuss the method for
etermining the values of the hyperparameters to be used. 

.2 Setup of GP models 

.2.1 Tool packa g e 

e adopt a tool package named GPYTORCH , which is a GP framework
eveloped by Gardner et al. ( 2018 ). It is a Gaussian process library
ased on an open source machine-learning framework PYTORCH . 1 

he package provides significant GPU acceleration, state-of-the-art 
mplementations of the latest algorithmic advances for scalability 
nd flexibility, and easy integration with deep-learning frameworks. 2 
 https://pytorch.org 
 Source codes and detailed introductions are available on ht tps://gpyt orch.ai . 

a  

s  

v  

s

e train GP models on a NVidia Tesla V100 graphics processing
nit (GPU) with 32GB GPU Memory. The GPU capti vity allo ws a
raining data set with up to ∼20 000 data points. 

.2.2 Training procedure 

he training procedure of a GP model includes training, validating, 
nd testing. In the training process, we iteratively optimize hyperpa- 
ameters of a GP model to learn the underlying function which maps
nputs to outputs from on-grid evolutionary tracks (training data set). 
n each iteration, the GP model is validated by comparing true and
P predicted values of some off-grid tracks (validating data set). 
lthough the validating data set is not directly involved in training
yperparameters, it still constructs the GP model to some extend 
ecause the optimal solution is the one that best fits the validating
ata set. For this reason, the validating data set does not give a
ompletely independent validation for a GP model. We hence have 
 testing process after the training. The testing data set contents
ome other off-grid tracks, which are reserved from the training and
alidating process. The testing data set are also used to estimate the
ystematic uncertainties of GP model. 
MNRAS 511, 5597–5610 (2022) 
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Figure 4. Top: Testing errors of 3D GP model for T eff on the M −EEP 
diagram. Dashes indicate section boundaries. Bottom: Examination of the 
edge effects of the section scenario. Probability distributions of testing errors 
of all testing data and those near the boundary ( ±0.01 EEP) in the upper 
graph are compared. As it can be seen, testing errors do not raise around the 
boundary. 
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Here, we briefly summary the set-up of GP model training. We
pply an Artificial Neural Network (ANN) including 6 hidden layers
nd 128 nodes per layer as the mean function. Note that this is not
raining an ANN to learn the data in detail. The ANN is quickly
rained at the beginning to interpret the complex mean function in

ultiple-dimension space to accelerate the whole training process.
n the GP model training, the mean function is normal uninteresting
ecause all the inference effort is spent on estimating the correct
ovariance function. In our tests, GP models with the linear or
he constant mean function could achieve similar results, but it
akes more time for models to converge. The GPYTORCH standard
ikelihood for regression, which assumes a standard homoskedastic
oise model, is applied as the likelihood function. We use the ne gativ e
ogarithm of the likelihood as the loss function. The optimizer for
raining is called ‘Adam’, which is a combination of the advantages
f two other extensions of stochastic gradient descent, specifically,
daptive Gradient Algorithm and Root Mean Square Propagation

Kingma & Ba 2014 ). More detailed discussions about these choices
an be seen in the Appendix A . 
NRAS 511, 5597–5610 (2022) 
We set up the so-called Early Stopping procedure to decide
hen to terminate the training. The procedure e v aluates GP mod-

ls on a holdout validation data set after each iteration. If the
erformance of the GP model on the validation data set starts to
egrade or stops upgrading after many iterations, then the training
rocess is terminated (see discussions in Anzai 2012 ; Goodfellow,
engio & Courville 2016 ). The Early Stopping procedure can

educe o v erfitting and impro v e the generalization of GP models.
e use a validating error index (defined in Section 4.2 ) to monitor

he training and terminate it when there is no impro v ement for
00 iterations. 
To save the best learned GP models, we check the validating error

nde x after ev ery iteration. The current model will be saved to replace
he last saving if it has the so-far lowest validation errors. This is to
ay, the final saved model is the one with the best performance in the
raining process. 

.2.3 Kernel function 

o select the proper kernel function for training GP models, we test
our basic kernels and a number of combined kernels. The four basic
ernels are listed as follow: 

(i) RBF : Radial Basis Function kernel (also known as squared
xponential kernel). 

(ii) RQ : Rational Quadratic Kernel (equivalent to adding together
any RBF kernels with different length-scales). 
(iii) Mat12 : Matern 1/2 kernel (equi v alent to the Exponential

ernel). 
(iv) Mat32 : Matern 3/2 kernel. 

These four kernels are all universal, and we can integrate each of
hem against most functions. Every function in its prior has infinitely
any deri v ati ves (Williams & Rasmussen 1996 ). The differences

etween these kernels, in a simply way, can be understood as
heir smoothness/fle xibility lev els. The RBF kernel is v ery smooth
unction and can be expressed as a product of a polynomial. It hence
uits for the case when the data follow a slowly varying function. The
Q kernel, as a combination of many RBF kernels, is more complex
nd is able to fit to data with a number of smooth underlying functions
e.g. when the output depends on multiple inputs). On the opposite,
he Mat12 gives the absolute exponential kernel, which is hence very
piky. It can fit to any sharp variations in the data. The Mat32 kernel
as a smoothness somewhere between the RBF and Mat12 kernels,
ecause it is a combination of an exponential and a polynomial.
t is a smooth function but has significantly more extrema than
he RBF kernel. For each kernel, there are hyper parameters (e.g.
he length-scale) to modulate the smoothness as well. The hyper
arameters can be either prioritized or purely determined in training
rocess. A less smooth kernel like Mat32 with a large length-scale
ould behave similarly to the RBF kernel. Ho we ver, RBF kernel with
mall length-scale cannot reproduce those extrema in Mat32 kernel.
hese differences are not chance coincidence, and the origin of these
ifferences are crucial for interpreting the results. Choosing a good
ernel for a particular application is necessary for good predictions.
f the kernel function is too spiky for the data, the learnt function
ould o v er e xplain some random variations. On the contrary, if the
ernel function is too smooth, it may not fully capture the variability
f the underlying function and lead to an increase in bias. Combining
asic kernels can increase the flexibility of a kernel. For instance,
he combination of a RBF kernel and a Mat12 kernel is able to fit
o both smooth and spiky features in the data. Ho we v er, o v erfitting

art/stac467_f4.eps
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Table 2. Setup of GP models. 

GP model inputs 
Parameter Notation Range 

Mass M 0.8–1.2 M �
Equi v alent e volutionary phase EEP 0–1 
Initial metallicity [Fe/H] init −0.5–0.5 dex 
Initial helium fraction Y init 0.24–0.32 
Mixing-length parameter αMLT 1.7–2.5 

GP model outputs 
Parameter Notation Trust-worth range a 

Ef fecti ve temperature T eff ≤7000 K 

Surface gravity log g −
Radius R −
Surface metallicity [Fe/H] ≥−0.6 dex 
Stellar age τ ≤20 Gyr 

Setup of training 
Item Adopted 
Kernel Mat32 
Mean function 6 layers x 128 notes neural network 
Likelihood function Gaussian likelihood function 
Loss function Exact marginal likelihood 
Optimizer Adam including AMSGRAD variant 
Termination Early stoping (monitoring the validating EI) 

a The ranges without strong edge effects. 

Table 3. Training and validating errors for GPR Models. 

Model type Inputs N Training Sampling rate Testing Errors (at 68/95/99.7per cent) 
T eff log g R [Fe/H] surf τ

(K) (10 −3 dex) (10 −3 R �) (10 −3 dex) (10 −2 Gyr) 

GP 2D 20,000 x 1 96 per cent 1/5/11 1/3/8 2/6/14 0.5/2/12 1/3/9 

GP 3D 20,000 x 1 5 per cent 2/6/16 1/4/10 3/7/17 2/6/22 2/7/22 
GP with 10 sections 3D 20,000 x 10 50 per cent 2/5/15 1/4/11 2/7/17 1/3/20 2/6/19 

GP 5D 20,000 x 1 0.2 per cent 3/9/34 2/5/18 4/11/36 2/7/30 3/9/27 
GP with 3 sections 5D 20,000 x 3 0.6 per cent 3/8/27 2/5/18 3/7/26 1/4/24 3/7/22 
GP with 5 sections 5D 20,000 x 5 1 per cent 2/7/25 1/4/15 3/7/24 1/4/21 2/6/22 
GP with 10 sections 5D 20,000 x 10 2 per cent 2/7/27 1/4/14 2/7/26 1/4/20 2/6/21 
GP with 20 sections 5D 20,000 x 20 4 per cent 2/7/26 1/4/14 2/7/27 1/3/18 2/6/22 
GP with100 sections 5D 20,000 x 100 20 per cent 2/7/25 1/4/14 2/7/26 1/3/17 2/6/18 
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s a risk when using a combined kernel because the kernel could be
 v erfle xible. 
According to the stellar theory, changing fundamental input 

arameters smoothly changes the dependent outputs. Hence, the 
ernel function for our application needs to be smooth. Moreo v er,
e can notice in Fig. 1 that the observable quantities fast vary at

ome particular regions (e.g. around the blue hook). This means that 
 slowly varying function like the RBF kernel may under fit in these
reas. We do a number of preliminary studies of training GP models
ith different kernel functions to choose the proper kernel function. 
etails of training will be mentioned in Section 4.2 . Here, we only

ummary the results. We apply four basic kernels and a number of
heir combinations (RBF + Mat21, RQ + Mat21, Mat32 + Mat21, 
BF + Mat32, RQ + Mat32) to train GP models. The combined
ernel RBF + Mat21 gives the best fit to the training data, ho we ver,
ts testing errors are large. This indicates that the kernel is too
exible and hence overfits to the data. The kernel having the best
erformance is the Mat32. The GP model with Mat32 fits training 
ata reasonably well and gives the best predictions for the testing 
odels. The results match our expectations. What we need is a 

mooth function but not too smooth to fit to the quick variations at
ome particular evolutionary phases. The Mat32 kernel is apparently 
uitable for our application. 
 PRELI MI NARY  STUDI ES  

efore training the whole model grid (with five input dimensions), 
e start with a number of preliminary studies on low-dimension data

et. These preliminary studies are for several purposes. In the 1D
roblem (training data on a single evolutionary track), we compare 
P predictions with the classical interpolator. In the 2D problem, we

rain GP models on a mass – EEP platform to test the performances of
sing different kernel functions. We also discuss about introducing a 
ew error index for validating and testing GP models instead of using
 global error quantity such like RMSE. In the 3D problem, where
P maps three fundamental inputs (mass, EEP, and metallicity) on 

o observables, we solve the training strategy for the large data set
hose data size excesses the practical limitation. 

.1 1D problem 

e first demonstrate an example of GP application on an 1D
roblem. We train a GP model using the Mat32 kernel to learn
he evolution of effective temperature for a 1 . 1M � track. We split
he model data points on this track into training and testing data
y 70-to-30. We train a GP model which maps EEP to ef fecti ve
emperatures and then test GP-predicted ef fecti ve temperatures with 
MNRAS 511, 5597–5610 (2022) 
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Figure 5. Roll medians and 68/95 per cent confidential intervals of testing errors against GP model inputs. Black solid lines indicate the median value; grey and 
blue shadows represent the 68 per cent and 95 per cent confidential interval. Testing errors of T eff , log g , and R mainly depend on M and EEP. Metallicity error 
strongly depends on M , EEP, and [Fe/H] init , and age error has a significant correlation to EEP and [Fe/H] init . Ho we ver, testing errors do not obviously relate to 
Y init or αMLT . 
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ruths. As it can be seen in Fig. 2 , the GP model gives very good
redictions with residuals less than ±0.5 K. As a comparison, we
t the training data with the quadratic function and use the fitted
unction to do the same prediction. We find very similar results
rom the two methods. It suggests that GP can be an alternative of
lassical interpolators on the 1D problem. 

.2 2D problem 

s a further step, we train GP models on a 2D problem where GP
odels map mass and EEP to the five observable outputs (Out-

uts = f ( M , EEP)). Training data are selected from the primary grid
ith fixed [Fe/H] init (0.0), Y init (0.28), and αMLT (2.1). There are 41

volutionary tracks that content 24 257 models, and we sample 20 000
f them as training data. To validate and test GP models, we compute
4 evolutionary tracks with the same [Fe/H] init , Y init , and αMLT but
andomly sampled M . We split off-grid tracks half-to-half as validat-
ng and testing data sets. The script developed based on the SIMPLE

P REGRESSION example. 3 We change the mean function and opti-
NRAS 511, 5597–5610 (2022) 

 https:// docs.gpytorch.ai/en/ stable/examples/ 01 Exact GPs/Simple GP Reg 
ession.html 

e
 

m  

c  
izer in the example and add an early stopping and a model saving
odules. We follow the aforementioned training procedure to train,

alidate, and test GP models. We illustrate the learned GP model
or ef fecti ve temperature on the mass–EEP diagram in Fig. 3 . As it
hown that, GP transforms the sparse data on to a continuous function
nd hence is able to predict values for unseen points in the grid. 

It can be seen in Fig. 3 that kernels in the area of M ≥ 1.05M �
nd EEP ≤ 0.7 is more complex than those for other regions. There
re two regions where global parameters vary relatively fast. The
rst is around the blue hook and main-sequence-turn-off point (EEP

0.4) where high-mass tracks sharply turns on the HR diagram.
he second is at early subgiant phase (EEP ∼ 0.6), where stars fast

estructure. Features in these particular areas are relatively difficult
o learn and hence poorly predicted by the GP model. When there is
 subregion in which the GP model performs worse than other areas,
he error distribution would not follow a Normal function. As shown
t the bottom of Fig. 3 , the density distribution of testing errors form
ong tails which contents about 10 per cent data. The cases for other
wo global parameters surface gravity and radius are similar to the
f fecti ve temperature. 

We also find substructures when inspecting testing errors for
etallicity and age. The region where the surface metallicity quickly

hanges is at the early subgiant phase for relatively high-mass tracks.
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Figure 6. Comparison between actual and GP predicted local systematic 
uncertainties (1 σ ) for T eff on the M −EEP diagram at [Fe/H] init � 0.0. To 
calculate the actual local values, we separate the mass range into 40 equally 
spaced segments and the EEP range into 50, and then measure the median 
testing error for each segment. 
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his is because high-mass models maintain shallow conv ectiv e 
nvelope and hence have strong diffusion effect during the main- 
equence stage. At the early subgiant phase, the quick expansion of
he surface conv ectiv e env elope mix es up the settled heavy elements,
eading to a fast raise of the surface metallicity. The accuracy of age
rediction drops down for very old low-mass stellar models. This 
s because age v alues v ary in a relatively big dynamic range (15–
0 Gyr) in a small fraction of data points. Poor GP predictions are
aused by the low age resolution. 

The error distribution causes an issue in validating and testing 
P models. What we normally use are some global errors, such 

s Root Mean Square Error (RMSE), to represent the validating or
esting results. For our case, a global error is not able to point out
ow GP performs in regions where an observable quantity quickly 
aries. We want to have an error index that can reflect the GP model
erformance in general as well as in those subareas. By inspecting 
he error distributions of all five outputs, we find the data points
n the tails (outside the three times of full width at half-maximum)
re around 10 per cent (8–12 per cent for different outputs). For the
ajority (90 per cent) of data points, which from a Gaussian-like
rofile, the 68 per cent confidential interval (1 σ uncertainty) can be
sed to reflect the global accurac y. F or the worst 10 per cent of the
ata, we could use the 95 per cent and 99.7 per cent confidential
ntervals (2 σ and 3 σ uncertainties) to describe the median and the
ength of the tail. Thus, we define an Error Index (EI), which is the
um of 68 per cent, 95 per cent, and 99.7 per cent cumulative values
f the absolute errors. For the case in Fig. 3 , cumulative values at
8 per cent, 95 per cent, and 99.7 per cent are 1.1, 4.9, and 11.1 K,
hich give a testing EI equals to 17.1 K. We apply this EI in all

ollowing training processes to validate and test GP models. 
We train GP models using different kernel functions to investigate 

hich is the best for our application. We do this with the 2D data
ecause the training is fast to be able to test many different options.
s mentioned in Section 3.2.3 , we find Mat32 is the most suitable
ernel for mapping the stellar model grid. 

.3 3D problem: strategy for large data sample 

e apply GP to a 3D problem where GP maps three fundamental
nputs, i.e. M , EEP, and [Fe/H] init to observables. The main purpose
f this preliminary study is investigate the strategy for training large
ata sample that exceeds the data size limitation of 20 000. We select
raining data from the primary grid with Y init = 0.28 and αMLT = 2.1.
he training data set contents ∼300 000 data points which is 15 times

he limit of training data size (20 000). For validating and testing
urposes, we compute another 174 evolutionary tracks with the same 
nput Y init and αMLT but random input M and [Fe/H] init . 

We start with sampling 20 000 training data and train a set of
P models. We then obtain testing EI for each output. For instance,

he testing EI for T eff is 23.5 K (2.0, 5.8, and 15.7 K at 68th, 95th,
nd 99.7th). We then apply two state-of-the-art approaches designed 
or large data set to train the model. These two approaches are
amed as Stochastic Variational GP (SVGP) and Structured Kernel 
nterpolation (SKI GP). We only find some minor impro v ements in
he GP predictions. Comparing the testing EI for T eff , SV GP giv es
 results of EI = 24.1 K (2.2, 6.8, and 15.1 K at 68th, 95th, and
9.7th) and SKI GP ends up with EI = 22.9 K (2.0, 6.1, and 14.8 K
t 68th, 95th, and 99.7th). Details about these two implementations 
nd discussions about the results can be seen in Appendix B . 

We seek for better strategy for training large data sample. The
PU memory captivity limits the actual number of data that induce

he kernel. This limitation becomes crucial for the high-dimension 
roblems. Because we need much more data given the fact that
he parameter space exponentially increases with the dimension. A 

imple way to o v ercome this issue is breaking the grid into many
ections and train GP models for each section separately. We divide
he training data set into 10 equal sections by EEP and sample 20 000
raining data in each. A set of GP models are then trained for each
EP section. Using this section scenario, we impro v e the testing EIs

or the five output parameters by around 10 per cent. For instance, the
esting EI for T eff decreases from 23.5 to 21.6 K. (1.7, 5.0, 14.9 K at
8th, 95th, and 99.7th). EI values for the five outputs before and after
ectioning can be seen in Table 3 . The section scenario outperforms
he SVGP and SKI GP methods. We hence apply it as our training
trategy. 

The section scenario impro v es the performance of the GP model,
ut there is a major concern about the edge effect at the boundary
etween segments. If a GP model works significantly poorly at these
oundaries, it will be difficult to map the systematic errors across
he whole parameter space. We hence examine potential edge effects 
s illustrated in Fig. 4 . We inspect absolute testing errors for each
MNRAS 511, 5597–5610 (2022) 
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Figure 7. Left: Comparing the original grid and GP predictions on Kiel diagram. Right: The systematical uncertainties for T eff given by GP–SYS models. 
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utput on the M − EEP diagram. No obvious edge effect is found. We
lso do a statistical comparison between all errors and those around
ection boundaries ( ±0.01EEP). As shown in the bottom graph, the
ensity distributions of the two samples are very similar to each
ther. 

 AU G M E N T I N G  T H E  STELLAR  G R I D  

ased on what we find from preliminary studies, we now apply
P to mapping the whole 5D model grid. The set-up of GP model

s summarized in Table 2 . The training data are sampled from both
rimary and additional grids (as described in Table 1 ). The additional
rid increases the grid resolution for relatively high-mass models, and
his gives more information about the blue hook for GP to learn. We
lso computed 4880 off-grid tracks. These off-grid tracks are split
y 50-to-50 for validating (in the training progress) and testing (after
he training progress) GP models. 

The section scenario is applied. For each section, we train a set of
P models for each output parameter with 20 000 training and 20 000
alidating data. The number of sections need to be tested to obtain
he best efficiency. To do this, we gradually increase the number of
ections from 1 to 100 and track down the changes in testing EI. We
nd significant impro v ement from 1 to 10 sections but no further

mpro v ements for more than 10 sections. We list the testing EI with
ifferent numbers of sections in Table 3 . It turns out that dividing the
rid into 10 sections (corresponding to a 2 per cent sampling rate) is
he most efficient. 

We use GP models for the 10-sections case as our final result. All
ollowing analysis and discussion are based on it. When testing GP
odels, we do not section the data set because the data size limitation

or testing is not strict. We sample 100 000 off-grid stellar models
s the testing data set. Note that we do not use models with τ ≥
0.0 Gyr, [Fe/H] surf ≤ −0.6dex, or T eff ≥ 7000K for testing because
e find strong edge effects in those ranges. 

.1 Ov er view of results 

n o v erview of testing errors (Truths – GP predictions) can be
een in Fig. 5 , where we plot rolling medians and rolling standard
eviations for all outputs’ errors against fundamental inputs. Median
alues are approximate along zero in most plots, indicating good
greement between GP predictions and true values. The 68 per cent
onfidence intervals are generally small and their dynamical ranges
o not significantly vary across input ranges. However, the 95 per cent
onfidence intervals have more significant changes and are not well
NRAS 511, 5597–5610 (2022) 
caled to the 68 per cent confidence intervals. This corresponds
o the tail feature as seen in Fig. 3 . GP predictions are relatively
oor in some particular re gions. F or instance, predictions for the
f fecti ve temperature are more scattered in high-mass because of the
ppearances of the blue hook. From these results, it can be seen that
he model systematic uncertainty is not uniform across the parameter
pace. Proper estimates of model uncertainty are hence necessary. 

.2 Mapping systematic uncertainties 

 learned GP model predicts output quantities with uncertainties
ased on its noise model. In our preliminary studies, uncertainties
re properly determined for the 1D and 2D problems, but we find
bviously underestimated uncertainties in the 3D problem. In the 5D
roblem, GP models also predict significantly small uncertainties:
hey are mostly one order of magnitude smaller than testing errors.
his is to say, the learned GP models are o v erconfident for high-
imension cases. The reason could be the equally spaced training
ata, from which GP model learn few variations at the scale smaller
han the grid step and hence turns to fit with large length-scale
alues. Because GP models do not give reliable uncertainties, we
ntend to use testing errors to estimate the systematic uncertainty
n GP prediction. As shown in Fig. 5 , systematical uncertainties
elate to M , EEP, and [Fe/H] init but not to Y init or αMLT . We can
reat this as a 3D problem and train another GP model, in which
P model systematic uncertainty is a function of M , EEP, and

Fe/H] init . 
We inspect the testing errors in the M -EEP-[Fe / H] init space and

nd that their local medians vary smoothly. We hence apply the
onstant mean function and the RBF kernel. The testing dataset
ontents 100 000 that exceeds the data size limitation. We use the
VGP approach but not the section scenario for this training, because

he SVGP can well handle large data following smooth function
see Appendix B for detailed discussions about SVGP). We split
he testing error data by 75-to-25 for training and validating. The
 ariational e vidence lo wer bound (ELBO) is adopted as the loss
unction because it is designed for when there is too much data
or the exact inference. We set up Early Stopping by tracking the
MSE value and terminate training when the RMSE value stops
ecreasing for 100 iterations. The outputs of GP models are the
ocal medians of testing errors. We use them to infer the systematic
ncertainties for five observable quantities (referred as σT eff , σ log g ,
R , σ[Fe / H] surf , and σ τ ). To differentiate these GP models, we refer

o them as GP–SYS models. In Fig. 6 , we compare the actual local
ystematic uncertainties for T eff at [Fe/H] init � 0.0 with those given
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Figure 8. Probability distributions of five fundamental parameters from grid-based (top row) and GP-based modelling (middle row) for a f ak e star. Grey solid 
lines in the top row and blue solid lines in the middle row are the kernel density of probability distributions. The bottom row demonstrates comparisons between 
kernel densities based on the two methods. True fundamental parameters, indicated by red dashed lines, are M = 1.062 M �, τ = 3.79Gyr, [Fe / H] init = 0.364, 
Y init = 0.292, and αMLT = 1.984. Observed constraints for this f ak e star are T eff = 5652 ± 50 K, log g = 4.424 ± 0.005, [Fe/H] surf = 0.31 ± 0.05, and R 

= 1.047 ±0 . 031 R �. 
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y the GP–SYS models. It shows that the GP–SYS model well 
eproduces the σT eff distributions. 

 M O D E L L I N G  STARS  WITH  G P  P R E D I C T I O N S  

.1 Augmenting the model grid 

ow we are able to use learned GP models to augment the original
tellar grid. We randomly sample 5000 000 data points with uniform 

istributions for five fundamental inputs ( M , EEP, [Fe/H] init , Y init ,
nd αMLT ). We then predict output quantities using GP models and 
heir systematic uncertainties using GP–SYS models. This GP-based 
odel data set can be downloaded following the instruction at https:

/github.com/litanda/GPGrid . In Fig. 7 , we demonstrate the original 
rid, GP predictions, and GP systematic uncertainties on the Kiel 
iagram. 

.2 GP-based modelling for 1000 fake stars 

s a final test of our method, we use GP-predicted stellar models
o characterize 1000 f ak e stars to examine whether the method
eco v ers true stellar properties. We compute 1000 f ak e model stars
ith the same input physics as the grid but randomly sampled 

nput fundamental parameters. To a v oid the edge effect, f ak e stars
re computed in the range of T eff = [4700 K, 6800 K], log g
 [3.7, 4.6], [Fe/H] surf = [ −0.35,0.35], M = [0.85,1.15], EEP
 [0.05,0.95], Y init = [0.25,0.31], and αMLT = [1.8,2.4]. We use 

our observables, i.e. T eff , log g , R , and [Fe/H] surf , as observed con-
traints. We apply typical observed uncertainty that is ±50 K for T eff 

high-resolution spectroscopy), ±0.005 dex for log g (seismology), 
 per cent for R (seismology), and ±0.05dex for [Fe/H] surf (high- 
esolution spectroscopy). Observed value for each constraint is cal- 
ulated with true value plus a random noise which follows a Gaussian
istribution. 
We fit f ak e stars using the Maximum Likelihood Estimate (MLE)
ethod. Note that the variance term in the MLE function contents

bserved uncertainty and also the model systematic uncertainty 
etermined with GP-SYS models ( σ 2 = σ 2 

obs + σ 2 
sys ). We measure 

he 16th, 50th, and 84th percentiles of the likelihood distribution to
stimate a parameter and its uncertainty. 

We present inferred stellar parameters for a representative f ak e
tar in Fig. 8 . Observed constraints for this f ak e star are T eff 

 5652 ± 50 K, log g = 4.424 ± 0.005, [Fe/H] surf = 0.31 ± 0.05,
nd R = 1.047 ±0 . 031 R �. True fundamental parameters are M
 1.062 M �, τ = 3.79 Gyr, [Fe / H] init = 0.364, Y init = 0.292, and
MLT = 1.984 (red dashes). We fit with both the original model
rid and the GP predictions for comparing. As it shown that the GP-
ased modelling has a completed statistical sampling and hence gives 
ore sensible posterior distributions than the grid-based modelling. 
he impro v ement for the age is obvious. GP-based modelling infers
MNRAS 511, 5597–5610 (2022) 
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M

Figure 9. Differences between true and estimated stellar masses and ages o v er their estimated uncertainty of 1000 f ak e stars. Black and blue symbols represent 
inferences with the original grid and with GP predictions. Count distributions of offsets are demonstrated on the right side. 
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n age of 4 . 3 + 2 . 0 
−1 . 8 Gyr, which is more precise than that determined

ith the original grid (4 . 4 + 2 . 2 
−2 . 4 Gyr). The age estimate with the

riginal grid does not actually converge because of under sampling.
or initial metallicity, initial helium fraction, and the mixing-length
arameter, GP-based models make it possible to properly estimate
hem without computing a very fine model grid. Thus, GP is an
fficient tool to augment a typical stellar model grid and o v ercome
he under sampling issue, as a result, impro v es the precision of
stimate. 

We compared estimates for the 1000 f ak e stars and find remark-
ble impro v ements in age estimates. The av erage precisions are
.7 per cent for mass and 26 per cent for age with the original grid
nd 4.5 per cent and 19 per cent with GP predictions. The accuracy of
P-based modelling is examined as illustrated in Fig. 9 , in which we

ompare modelling solutions with f ak e stars’ true masses and ages.
ood consistence is found, and we also see that differences nicely

ollow a normal distribution, saying that the fitting is only affected
y random noises in observations. Comparing between grid-based
nd GP-based modelling, their results for the mass both consist with
ruths, but the median age difference shifts to around −0.2 for the
rid-based modelling. The underestimations of age is due to the
n-completed sampling in the original grid. 

 C O N C L U S I O N S  

n this work, we apply a machine-learning algorithm that involves a
aussian process as an interpolator to augment a stellar grid. We train
P models to convert a sparse model grid into continuous functions,
hich map five fundamental inputs to observable quantities. We
nd good precision and accuracy in GP-based interpolations when

esting them with off-grid models. A GP-predicted model data
et is then generated and we use it to model 1000 f ak e stars.
omparing with the original sparse grid, GP-predicted models have
omplete sampling across the parameter space and hence impro v e
he accuracy and the precision of estimates, particularly for the
tellar age. Moreo v er, the archiv ed continuous functions make it
ossible to do statistical analysis sampling like Markov Chain
onte Carlo, which provide statistically sound estimates for stellar

arameters. 
NRAS 511, 5597–5610 (2022) 
The application of GP’s make it efficient to generate a statistically
ound model data set based on a sparse model grid. It works well for
igh-dimension case (up to 5D in this work) and this can be a big ad-
antage compared with traditional interpolators. The choice of kernel
s crucial for the success of a particular case. We hence do a number
f preliminary studies for the best option. A limitation of the training
tep for the GP is the size of the training data set and the requirement
o perform matrix inversion and calculate the matrix determinant. For
raining a normal GP model, the practical training data size upper
imit is around 20 000 (the number depends on the capacity of GPU
evice) which is apparently not big enough for the high-dimension
rid including ∼10 000 000 models. To o v ercome this issue, we sec-
ion the training data according to their evolutionary stage (EEP) and
rain GP models for each section. This section scenario significantly
mpro v es o v erall accurac y of GP predictions and we find no edge
ffects at the boundary of sections. When inspecting the systematic
ncertainty of GP models, we notice that GP predictions are very
 v erconfident in the high-dimension problem: the uncertainties given
y GP models are mostly smaller than testing errors by an order of
agnitude. Because of this, we use the testing errors to estimate

ystematic uncertainties across the parameter space. Eventually, we
rovide a GP-based model data set including 5 000 000 models with
andomly sampled fundamental inputs. 

We use GP-based models to characterize 1000 f ak e stars to
xamine whether truths of stellar properties can be reco v ered. We
nd that GP-based masses and ages are consistent with the injected

ruth values. The uncertainties are dominated by observational noise,
aying that, the systematic uncertainty due to the GP approximation
oes not obviously affect the modelling on interferences. Comparing
ith the probability distributions of original sparse grid, GP models

re fully sampled in the input range and hence impro v e the accurac y
nd precision of inferred parameters. The impro v ement is remarkable
or the precision of stellar age (by 7 per cent). Moreo v er, the
ontinuous sampling makes it possible to properly estimate some
undamental parameters which are sparse in the grid, e.g. the helium
raction. These results indicate that the method demonstrated in
his work is reliable and efficient for interpolating an established
odel grid and it can impro v e the modelling solutions because of

he statistically sound sampling. 
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PPENDI X  A :  SET-UP  O F  G P  M O D E L  

R A I N I N G  

his section includes detailed discussions about the selections of 
ean function, likelihood and loss function, and optimizer. 

1 Mean function 

e first investigate the mean function. As discussed abo v e, the data
istribution is generally smooth but complex in some regions of 
arameter space (e.g. the subgiant hook). Although the choice of 
ean function is not crucial for training GP models, we find that

sing a constant or a linear mean function leads to a significantly
ong training time. Hence, we apply a neural network mean function
hich is flexible enough to manage both simple and complex features

o accelerate the training. We adopt an architecture based on that
f Lyttle et al. ( 2021 ) comprising 6 hidden layers and 128 nodes
er layer. All layers are fully-connected and the output of each
ayer, except for the last, is transformed by the Exponential Linear
nit (ELU) acti v ation function (Cle vert, Unterthiner & Hochreiter
015 ). The ELU acti v ation function provides a smooth function from
nputs to outputs, which is preferred o v er its more common, faster
ounterpart, the Rectified Linear Unit (RELU). 

2 Likelihood and loss function 

ur training data set is a theoretical model grid; hence, there is
o observed uncertainty for each data point, but a tiny random
ncertainty exists due to the approximations in the MESA numerical 
ethod. We model this using σw . This noise model is then assumed

o be a Gaussian function with a very small variance. A likelihood
pecifies the mapping from input values f ( X ) to observed labels y .
e adopt the standard likelihood for regression which assumes a 

tandard homoskedastic noise model whose conditional distribution 
s 

( y | f ( x )) = f + ε, ε ∼ N 

(
0 , σ 2 

)
, (A1) 

here σ is a noise parameter. We used a small and fixed noise
arameter and run a few tests. However, the strict noise parameter
akes GP models hard to converge. When this noise parameter 

s set as free, it reduces to a small value anyway in the training
rogress because it is data-driv en. F or this reason, we did not put
trict constraint for or prioritize this noise parameter. In practice, we
nly set up a loose upper limit ( σ < 0.1) to speed up the training. One
hing should be noted that a GP model with a large noise parameter
s not a proper description for the stellar grid. Because of this, we
nly adopt GP models with σ � 10 −4 . We train GP models using the
e gativ e logarithm of the likelihood function as the loss function. 

3 Optimizer 

e compared two optimizers named SGD and Adam. Here, SGD 

efers to Stochastic Gradient Descent, and Adam is a combination 
MNRAS 511, 5597–5610 (2022) 
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f the advantages of two other extensions of stochastic gradient
escent, specifically, Adaptive Gradient Algorithm and Root Mean
quare Propagation. The SGD optimizer in the GPYTROCH package

nvolves the formula given by Sutskever et al. ( 2013 ). The formula
akes it possible to train using stochastic gradient descent with
omentum thanks to a well-designed random initialization and a

articular type of slowly increasing schedule for the momentum
arameter. The application of momentum in SGD could impro v e
ts efficiency and make it less likely to stuck in local minimums.
n the other hand, the Adam optimizer includes the ‘AMSGrad’
 ariant de v eloped by Reddi, Kale & K umar ( 2018 ) to impro v e its
eakness in the convergence to an optimal solution. With these new
evelopments, the two optimizers giv e v ery similar results. We finally
hoose Adam because it works relati vely ef ficiently and stable. We
daptive learning rate in the training process. Our training starts with
 learning rate of 0.01 and decreases by a factor of 2 when the loss
alue does not reduce in previous 100 iterations. 

PPENDIX  B:  STATE-OF-THE-ART  

MPLEM ENTATIONS  F O R  L A R G E  DATA  SET  

n Section 4.3 , we investigate the strategy for large data set. We test
wo state-of-the-art approaches that designed for training big data
hose data size is more than the limit of a GP model. Here, we
ention some details about the two methods and the results. 
We first consider the Stochastic Variational GP (SVGP)

pproach based on the GPYTORCH APPR O XIMATEGP mod-
le. We train our data based on the SV GP e xample
n https:// docs.gpytorch.ai/en/ v1.1.1/examples/ 04 Variational and 
pproximate GPs/SVGP Regression CUDA.html . SVGP is an ap-
roximate scheme rely on the use of a series of inducing points which
an be selected in the parameter space. It trains using mini batches
nd hence is able to deal with large data size. The other key point of
VGP is the number of inducing points. Because the kernel is only
uilt on these points, the number determines the complexity of kernel.
hen the underlying function is simple, for instance, a power law,

 small number of inducing points is enough. For our application, a
arge number of inducing points are required. Underlying principles
nd detailed descriptions of this approach can be found in Hensman,
NRAS 511, 5597–5610 (2022) 
atthews & Ghahramani ( 2014 ). In our tests on 3D problem, we
nd a practical issue with the SVGP approach. When we load in a

arge training sample that takes a lot GPU memory, the rest memory
an capacitate only 10 000 inducing points. This is to say, we use
ore training data but sacrifice the kernel complexity. The result

hows that using SVGP model does not impro v e the GP predictions
ompared with normal GP model. For instance, the 68th, 95th, and
9.7th testing errors for T eff are 2.2, 6.8, and 15.1 K (EI = 24.1 K) for
he SVGP and 2.0, 5.8, and 15.7 K (EI = 23.5 K) for the normal GP

odel. This is because the evolutionary feature are complex across
ultiple dimensions. Reducing the kernel complexity is not ideal.
e conclude that the SVGP is suitable for training large data that

av e relativ ely simple variations but not a good choice for training
he model grid. 

We also investigate another approach designed for large data
et named Structured Kernel Interpolation (SKI GP). SKI GP was
ntroduced by Wilson & Nickisch ( 2015 ). It produces kernel approx-
mations for fast computations through kernel interpolation and is a
reat way to scale a GP up to very large datasets (100 000 + data
oints). We follow the example on https:// docs.gpytorch.ai/en/ st
ble/examples/02 Scalable Exact GPs/KISSGP Regression.html to
evelop our script. We run a few tests to train a 3D SKI GP model
ith 100 000 training data. Compare with the Normal GP and SVGP,

ts testing errors for T eff are slightly impro v ed to 2.0, 6.1, and 14.8 K
EI = 22.9 K). Ho we ver, the further test on the 5D data is not ideal: a
KI GP model using 100 000 training data performs much worse than
 normal model with only 20 000 training data. The poor behaviour
onsists with what has been discussed by Wilson & Nickisch ( 2015 ):
he SKI GP poorly scale to data with high dimensions, since the cost
f creating the grid grows exponentially in the amount of data. We
ttempt to make some additional approximations with the GPYTORCH

DDITIVESTRUCTUREKERNEL module. It makes the base kernel to
ct as 1D kernels on each data dimension and the final kernel matrix
ill be a sum of these 1D kernel matrices. Ho we ver, the testing errors

re not significantly impro v ed. 
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https://docs.gpytorch.ai/en/v1.1.1/examples/04_Variational_and_Approximate_GPs/SVGP_Regression_CUDA.html
https://docs.gpytorch.ai/en/stable/examples/02_Scalable_Exact_GPs/KISSGP_Regression.html
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