A Linear Algebraic Framework for Quantum Internet Dynamic Scheduling - Archive ouverte HAL Access content directly
Conference Papers Year : 2022

A Linear Algebraic Framework for Quantum Internet Dynamic Scheduling

Paolo Fittipaldi
  • Function : Author
  • PersonId : 1134832
Frédéric Grosshans


Future quantum internet aims to enable quantum communication between arbitrary pairs of distant nodes through the sharing of end-to-end entanglement, a universal resource for many quantum applications. As in classical networks, quantum networks also have to resolve problems related to routing and satisfaction of service at a sufficient rate. We deal here with the problem of scheduling when multiple commodities must be served through a quantum network based on first generation quantum repeaters, or quantum switches. To this end, we introduce a novel discrete-time algebraic model for arbitrary network topology, including transmission and memory losses, and adapted to dynamic scheduling decisions. Our algebraic model allows the scheduler to use the storage of temporary intermediate links to optimize the performance, depending on the information availability, ranging from full global information for a centralized scheduler to partial local information for a distributed one. As an illustrative example, we compare a simple greedy scheduling policy with several Max-Weight inspired scheduling policies and illustrate the resulting achievable rate regions for two competing pairs of clients through a network.
Fichier principal
Vignette du fichier
main.pdf (549.01 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03673079 , version 1 (19-05-2022)
hal-03673079 , version 2 (19-09-2022)




Paolo Fittipaldi, Anastasios Giovanidis, Frédéric Grosshans. A Linear Algebraic Framework for Quantum Internet Dynamic Scheduling. IEEE International Conference on Quantum Computing and Engineering (QCE22), Sep 2022, Broomfield, CO, United States. pp.447-453, ⟨10.1109/QCE53715.2022.00066⟩. ⟨hal-03673079v2⟩
202 View
81 Download



Gmail Mastodon Facebook X LinkedIn More