
HAL Id: hal-03673079
https://hal.science/hal-03673079v2

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

A Linear Algebraic Framework for Quantum Internet
Dynamic Scheduling

Paolo Fittipaldi, Anastasios Giovanidis, Frédéric Grosshans

To cite this version:
Paolo Fittipaldi, Anastasios Giovanidis, Frédéric Grosshans. A Linear Algebraic Framework
for Quantum Internet Dynamic Scheduling. IEEE International Conference on Quantum Com-
puting and Engineering (QCE22), Sep 2022, Broomfield, CO, United States. pp.447-453,
�10.1109/QCE53715.2022.00066�. �hal-03673079v2�

https://hal.science/hal-03673079v2
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

A Linear Algebraic Framework
for Quantum Internet Dynamic Scheduling

Paolo Fittipaldi∗ Anastasios Giovanidis† Frédéric Grosshans‡
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

∗paolo.fittipaldi@lip6.fr †anastasios.giovanidis@lip6.fr ‡frederic.grosshans@lip6.fr

Abstract—Future quantum internet aims to enable quantum
communication between arbitrary pairs of distant nodes through
the sharing of end-to-end entanglement, a universal resource for
many quantum applications. As in classical networks, quantum
networks also have to resolve problems related to routing and
satisfaction of service at a sufficient rate. We deal here with
the problem of scheduling when multiple commodities must be
served through a quantum network based on first generation
quantum repeaters, or quantum switches. To this end, we introduce
a novel discrete-time algebraic model for arbitrary network
topology, including transmission and memory losses, and adapted
to dynamic scheduling decisions.

Our algebraic model allows the scheduler to use the storage
of temporary intermediate links to optimize the performance,
depending on the information availability, ranging from full global
information for a centralized scheduler to partial local information
for a distributed one. As an illustrative example, we compare a
simple greedy scheduling policy with several Max-Weight inspired
scheduling policies and illustrate the resulting achievable rate
regions for two competing pairs of clients through a network.

I. INTRODUCTION

Designing the Quantum Internet raises many challenges to
network scientists and quantum physicists alike. Among them,
the one of designing a scheduling policy is particularly familiar
to the former: whenever multiple users wish to communicate
through a classical network, a scheduling policy regulates fair
and efficient relay of the data packets inside queues across
the network routes. In the context of networks based on first
generation quantum repeaters [1] or quantum switches [2],
[3], users are linked through quantum entanglement swapping:
letting 𝐴𝐵 and 𝐵𝐶 be two links that share one entangled
pair each, entanglement swapping allows to teleport their
entanglement to the link 𝐴𝐶 through a local measurement
at node 𝐵. This consumes the 𝐴𝐵 and 𝐵𝐶 pairs and yields
one 𝐴𝐶 pair. Entangled pairs of qubits, or ebits, are a
universal resource for quantum communication [4]: together
with classical communications, they allow to implement a wide
array of quantum protocols [5]. The task of a quantum network
is therefore to distribute entanglement to multiple user pairs
through a graph of interconnected quantum repeaters. Since
the routes of service might not be disjoint, distribution along
routes that share a subpath creates conflict that must be carefully
mediated by the scheduler. In practice, a quantum scheduler
must determine which swapping operations to perform at
a given time, balancing between serving user requests and
keeping a margin to improve future performance. Notice
how the scheduling challenge naturally descends from the

introduction of memories: without them, large scale networks
only have the option to either swap pairs as soon as they
are distributed or waste them. This work actively exploits the
memory in the scheduling process, which yields the possibility
for the network control system to store some pairs to swap at
a following time, leveraging this additional degree of freedom
through carefully taken scheduling decisions in a similar way to
what [6] shows for routing. Throughout this work, the routing
in the network is assumed to be fixed and known, i.e., every
user pair comes with a set of routes along which the network
will distribute entanglement to serve requests. We propose a
linear algebraic discrete time model for quantum scheduling
including all the previously mentioned factors which is suitable
for any network topology including heterogeneous ones, and
is dynamically controlled, i.e., the scheduling decisions are
taken in real time given some degree of information on the
current network state. The algebraic model is presented and
formalized, and then applied to different scheduling policies:
a greedy one where each node swaps randomly as soon as
there is pair availability, a Max Weight [7] inspired one
that has full information about the state of the network at
any time and can therefore provide a best case scenario,
and an intermediate one where each node solves its own
individual Max Weight problem, using only local information.
The achievable rate regions of these policies are shown and
compared. The provided comparison ranges also in terms of
localization: a global scheduler is implemented as a central
block outside the network that receives information about the
system’s state and broadcasts back a decision, while a localized
one gives the nodes themselves the authority to decide. As
will be analyzed in the dedicated section, varying the degree
of localization of the scheduler changes the amount of time
required for classical communication, indirectly affecting the
achievable performance of the scheduler. The rest of this work
has the following organization: Section II reviews the scientific
context around this work, Section III describes in detail the
system we are modeling and Section IV shows application
of the algebraic model to real scheduling policies. Section V
shows the numerical results we obtained through our model,
and Section VI concludes the paper.

II. CONTEXT AND RELEVANCE OF THIS WORK

A large amount of work in the quantum internet field consists
in adapting classical network theory concepts through novel
ideas that bridge the gap. An introduction to the subject and

mailto:paolo.fittipaldi@lip6.fr
mailto:anastasios.giovanidis@lip6.fr
mailto:frederic.grosshans@lip6.fr

definition of the quantum network stack can be found in [8].
Delving deeper, one may see this work as an extension of [9],
which treats the problem of routing without scheduling: this
work deals with scheduling and adds a treatment of memory
and loss. In [2], [3], a full stochastic analysis of a single
quantum switch is provided and some scheduling policies
are implemented on it: we state a similar problem but on
an arbitrary network topology, deriving results that should
prove relevant on several network scales. [10] examines the
application of a Max Weight policy to quantum networks,
akin to the last section of this work, the difference being
that our effort focuses on the general scheduling model, with
the Max Weight policy being provided as an example of
its applicability. Finally, an optimal theoretical bound for
entanglement distribution across a network with a single
commodity is derived in [11] and expanded upon in [12].
Our work extends the treatment to multiple commodities on
any arbitrary topology accounting for degrees of freedom such
as memory, ebit generation statistics, technology imperfections
(e.g., memory and fiber losses) and scheduling policy.

An important contribution of this work is the novel appli-
cation of an idea similar to [6], [12], in a non-trivial way to
general topologies and multiple commodities: the introduction
of memory at the nodes allows them to decide between
employing entangled pairs for swapping or keeping them for
future use. The deeper implication of this point is that the
network is free to create intermediate links and store them: this
leads to distributing pairs across a service route in a “growing”
fashion, that both increases performance and removes the need
for end-to-end link state information.

III. SYSTEM DESCRIPTION

We use the following notation convention: lower case for
scalars (𝑥), bold lower case for vectors (x), bold upper case
for matrices (X) and calligraphic upper case for sets (X). Well-
known matrices such as the identity matrix or the null matrix
are indicated in blackboard bold and subscripted with their
dimension (𝕀𝑛, 𝟘𝑛×𝑚).

The physical system that will be modeled is a network of
quantum switches. These are devices that can hold qubits and
perform entanglement swapping across multiple pairs of clients,
akin to a quantum repeater with multiple possible linking paths.
Given an arbitrary connected graph G = (V, E), the switches
are deployed at the locations specified by the vertices of G
and interconnected by lossy fiber links running along each
edge (𝑖, 𝑗) ∈ E. Every switch has a number of memory slots,
assumed to be infinite in this work, in which qubits may be
stored. Ebits (pairs of entangled qubits) are generated by each
fiber link with a given constant average rate, which may be
different for each link, and stored inside memories at the
end nodes of the respective link. Among the network nodes,
there are 𝑛 fixed pairs {(Alice1,Bob1), . . . , (Alice𝑛,Bob𝑛)}
that request ebits in a random way to realize a generic
application. The (Alice𝑛,Bob𝑛) pairs are connected by fixed
known routes that are not necessarily disjoint and therefore
can create congestion across some of the network links, that

needs to be managed by a scheduler. The task of the network
is to distribute ebits to serve demands through entanglement
swapping, while being hindered by loss: other than the losses
across the fiber links, an additional form of loss is tied to
memory imperfections, which cause stored qubits to effectively
disappear and entanglement to be lost. Memory and fiber losses
are the only two sources of imperfection that are accounted
for in this paper: swaps in the switches are assumed to always
succeed and memory slots at each switch are infinite, but
neither of these assumptions is too limiting and they could
easily be lifted in following research. For simplicity reasons,
we neglect sources of state degradation other than losses in
this introduction of our algebraic model, since they require a
more detailed description of the quantum state of the ebits, and
lead to more complex multiobjective routing and scheduling
algorithms [13], [14]. Note also that our model also applies
directly to more long-term quantum networks, where the ebits
are logical error-corrected ebits.

For practical reasons, our model assumes a discrete time:
swapping operations are supposed to occur at fixed time
intervals, thus it is natural to take a discrete time step Δ𝑡

as the time unit of interest. Between two subsequent clock
ticks, the system is free to evolve, and at the end of each
time step a scheduling decision is taken. This places a lower
bound on Δ𝑡: no decision can happen before all information
has been successfully communicated to all deciding agents,
thus Δ𝑡 must be at least as large as the classical communication
delay introduced by state-related information exchange. This in
turn introduces a tradeoff: large Δ𝑡 means that information can
travel farther before the scheduling decision is taken (allowing
for larger networks or scheduling policies that require several
physically spaced nodes to communicate), but it increases
losses, as detailed below, and it introduces the issue of stale
information: during the time it takes for state information to
reach its recipient, the system continues its stochastic evolution,
making the communicated data less relevant by the time it
reaches the place where the scheduling decision is taken. To
model ebits stored at memory nodes, the concept of an ebit
queue is introduced: each pair of nodes 𝑒 = (𝑖, 𝑗) inside the
extended edge set Ẽ = V × V is said to possess an ebit
queue 𝑞𝑖 𝑗 (𝑡). Furthermore, among ebit queues, every 𝑞𝑖 𝑗 (𝑡)
associated to an edge (𝑖, 𝑗) ∈ E equipped with fiber is called
a physical queue, while all other ebit queues are called virtual
queues. Ebit queues are an abstraction for memory slots on
pairs of nodes: generation, loss and swapping may be modeled
as addition, subtraction and exchange along the relevant queues.
At each time step, every fiber link — and thus every physical
queue — generates a number of ebits 𝑎𝑖 𝑗 (𝑡). This can model
different ebit generation processes: either the physical link
(𝑖, 𝑗) corresponds to a twin photon source which propagates
to the switches 𝑖 or 𝑗 , or alternatively it corresponds to two
photons — each one entangled with one of the switches —
that meet in the middle of the link where they are subjected
to a Bell state measurement (BSM). It can also model more
elaborate entanglement distillation protocols or error correction
based protocols based on logical qubits. Since most of these

processes are probabilistic in nature 𝑎𝑖 𝑗 (𝑡) will here be treated
as a random process, which we assume to be Poissonian of
mean value 𝛼𝑖 𝑗 , constant in time. This allows to model the link
imperfections — finite brightness of the source, propagation
losses, finite success probability of photonic BSMs, etc. —
as a Poisson filtration process, which simply decreases the
value of 𝛼𝑖 𝑗 . Note that 𝑎𝑖 𝑗 (𝑡) need not be Poissonian: more
elaborate models for 𝑎𝑖 𝑗 (𝑡) are possible, e.g. to model an almost
perfect pulsed periodic twin-photon source. The modelization
of memory loss is slightly more complex: a qubit stored
inside a quantum memory has a probability 𝜂 to survive for
a time Δ𝑡 that is exponentially decreasing as 𝜂 = exp

(
−Δ𝑡

𝜏

)
,

where 𝜏 is the expected lifetime of a qubit in the memory, a
technological parameter expected to vary between nanoseconds
and milliseconds in near term implementations [15]. By setting
Δ𝑡 to the duration of a time step, we obtain the probability
𝜂 for a stored ebit to survive for one time step. The number
of timesteps an ebit survives in memory is then given by the
geometric distribution defined by 𝜂. It is easy to show its mean
value 1

1−𝜂 tends to the expected 𝜏
Δ𝑡

for small Δ𝑡
𝜏

, 𝜏 being the
actual lifetime of the memories. The remaining difference is an
effect of the dicretization. Looking now at all the ebits in queue
𝑞𝑖 𝑗 (𝑡) collectively from one timestep to the next, their losses
are modeled by a binomially distributed random variable ℓ𝑖 𝑗 (𝑡),
with as many trials as there are ebits stored in queue (𝑖, 𝑗) and
probability to lose one pair 1−𝜂. Accounting for losses in such
a time-dependent way makes the presented framework valid
also as a tool to determine the optimal frequency at which
scheduling decision should be taken, given the technological
parameters.

For what concerns scheduling decisions, let 𝑟𝑖 [𝑗]𝑘 (𝑡) indicate
the number of swapping operations that happen at a given time
step, at node 𝑗 , from queues (𝑖, 𝑗) and (𝑗 , 𝑘) to queue (𝑖, 𝑘):
as a notation example, 𝑟𝐴[𝐵]𝐶 (2) = 3 indicates three swapping
operations at node 𝐵 from queues 𝐴𝐵, 𝐵𝐶 to 𝐴𝐶 at time step
2. Every node will be associated to as many 𝑟𝑖 [𝑗]𝑘 (𝑡) variables
as there are swapping operations that can be performed at the
node in the given routing, and the scheduler’s task will be to
set such variables to control the network’s behavior. To clarify,
suppose to have the service route 𝐴𝐵𝐶𝐷 across the users 𝐴

and 𝐷, as shown in Fig. 1. Assume the average arrival rates
to be 𝛼𝐴𝐵, 𝛼𝐵𝐶 and 𝛼𝐶𝐷 = 1 (time steps)−1. Lastly, assume
that all the memories in the system have 𝜂 = 0.9 storage-and-
retrieval efficiency. Fig. 2 shows the same test run but focusing
on queue 𝐴𝐵, to highlight the timing of the simulation.

• During time step 0:
1) At the beginning of the time step, the queue states are:

𝑞𝐴𝐵 (0) = 𝑞𝐶𝐷 (0) = 1, 𝑞𝐵𝐶 (0) = 0
2) At the end of the time step, new ebits have been generated

(𝑎𝐴𝐵 (0) = 2, 𝑎𝐵𝐶 (0) = 1) and one has been lost
(𝑎𝐶𝐷 (0) = 1). The scheduling decision is taken from
this configuration as 𝑟𝐴[𝐵]𝐶 (0) = 1: one swap at node
𝐵 from queues 𝐴𝐵 and 𝐵𝐶 to 𝐴𝐶.

• During time step 1:
1) The initial configuration sees two stored pairs in 𝐴𝐵

Fig. 1. Example of simulation of two time steps over the whole topology.
Continuous lines represent physical queues and dashed lines virtual ones. Grey
circles represent ebits that were in the queue at the beginning of a time step,
red ones ebits that arrived during that time step. Blue crosses represent loss
of an ebit. Upper figures (a) at the beginning of the time step, lower figures
(b) at the end of the time step.

Fig. 2. Example of two time steps from the point of view of queue 𝐴𝐵.
Circles and crosses have the same meaning as fig.1. Queue snapshots are taken
at the very beginning of a time step, while arrivals and losses happen during
but are only assessed at the end of the step as soon as the scheduling decision
is taken. Ebits arriving during the current time step are not subject to losses
in this model.

which were not employed in the last time step (𝑞𝐴𝐵 (1) =
2) and the freshly swapped one in 𝐴𝐶 (𝑞𝐴𝐶 (1) = 1).

2) Throughout the time step, one pair was lost across
𝐴𝐵 (ℓ𝐴𝐵 (1) = 1) and one generated across 𝐶𝐷. The
scheduler may now decide 𝑟𝐴[𝐶]𝐷 (1) = 1 to move to
𝐴𝐷 or store the pairs for future use.

In term of ebits, a given transition 𝑖[𝑗]𝑘 is incoming for queue
(𝑖, 𝑘) and outgoing for queues (𝑖, 𝑗) and (𝑗 , 𝑘). A queue’s
evolution can therefore be summarized as follows, i.t. being a
shorthand for incoming transitions, o.t. for outgoing transitions:

𝑞𝑖 𝑗 (𝑡 + 1) = 𝑞𝑖 𝑗 (𝑡) + 𝑎𝑖 𝑗 (𝑡) − ℓ𝑖 𝑗 (𝑡)
−
∑︁
𝑜∈o.t.

𝑟𝑜 (𝑡) +
∑︁
𝑘∈i.t.

𝑟𝑘 (𝑡). (1)

It should be noted that, while all terms of (1) are calculated
for every queue, 𝑎𝑖 𝑗 (𝑡) across a virtual queue will always be
zero, because virtual queues do not generate ebits. Conversely,
it should be stressed that the loss term ℓ𝑖 𝑗 (𝑡) is calculated in
the same way for all queues, because ebit storage is always
handled by memories at the network nodes: the physical/virtual
queue is a mere modeling artifact to keep track of which
memories store the two parts of a given ebit. A description of
the whole system requires |Ẽ | equations like (1). To keep things
compact, it is useful to define some vector terms. The first
ones are q(𝑡), a(𝑡) and ℓ(𝑡), whose 𝑁queues entries correspond
to the individual 𝑞𝑖 𝑗 (𝑡), 𝑎𝑖 𝑗 (𝑡) and ℓ𝑖 𝑗 (𝑡) values (the ordering
is irrelevant as long as it is consistent). Furthermore, since the
effect of swapping on the queues is linear, it is possible to
describe it by introducing the vector r(𝑡), which has 𝑁transitions
elements — as many as there are allowed transitions — and

TABLE I
M MATRIX FOR THE LINEAR 𝐴𝐵𝐶𝐷 NETWORK

𝐴[𝐵]𝐶 𝐵 [𝐶]𝐷 𝐴[𝐵]𝐷 𝐴[𝐶]𝐷
𝐴𝐵 −1 0 −1 0
𝐵𝐶 −1 −1 0 0
𝐶𝐷 0 −1 0 −1
𝐴𝐶 +1 0 0 −1
𝐵𝐷 0 +1 −1 0
𝐴𝐷 0 0 +1 +1

a matrix M with 𝑁queues rows and 𝑁transitions columns. The
r(𝑡) vector stores all the 𝑟𝑖 [𝑗]𝑘 (𝑡) terms, and embodies the
scheduling decision, while the M matrix introduces an efficient
encoding of the network topology and the service routes: For
each of its columns, associated to transition 𝑖[𝑗]𝑘 , the M
matrix has −1 on the rows associated to queues (𝑖, 𝑗) and
(𝑗 , 𝑘), and +1 on the row associated to queue (𝑖, 𝑘). All other
terms are zero. System-wide queue evolution can be restated
as the following simple linear equation:

q(𝑡 + 1) = q(𝑡) − ℓ(𝑡) + a(𝑡) + Mr(𝑡). (2)

Notice that eq. (2) entails an implicit assumption that the r(𝑡)
be not only a scheduling decision, but a feasible scheduling
decision, i.e., one that does not cause the queues to turn negative.
The meaning of this assumption will be clear when discussing
partially informed scheduling policies. An example of the M
matrix is given in table I. The sum of each column of M is −1:
this work only employs binary swaps, and each binary swap
consumes two ebits and produces one, balancing to an overall
−1 on the total ebit count. Given a set of service routes, the M
matrix can be automatically generated with the code provided
in the application section. The final piece of the puzzle for
ebit queues is consumption: whenever there is availability of
entangled pairs across one of the final (Alice𝑛,Bob𝑛) pairs,
the scheduler must be able to use the available pairs to serve
requests. This is implemented in the model by extending the
matrix M to a new M̃ =

[
M
��−𝕀𝑁queues

]
, and the r(𝑡) vector

to have 𝑁transitions + 𝑁queues components. What this extension
achieves is to have a set of transitions that only remove one
pair from a given queue, modeling actual consumption of the
distributed pair by the users. Due to its construction, the M̃
matrix gives an efficient and concise description of the network
topology and how the clients are connected to each other: it
is therefore topology and service dependent, and provides all
information about both. Putting it all together, the vector of
ebit queues evolves as:

q(𝑡 + 1) = q(𝑡) − ℓ(𝑡) + a(𝑡) + M̃r(𝑡). (3)

where the feasibility assumption from above is still taken. The
introduction of consumption completes modeling of the ebits
part of the system. However, there is no representation of user
requests yet: in a real quantum network, users would request
a given number of ebits to cater to a specific application
at random times, and a well designed scheduler needs to
take user requests into account when controlling the swapping
network. Similarly to ebits, demands arriving to the system and
being held for future service are also modeled through queues:

alongside every ebit queue, there exists a demand queue 𝑑𝑖 𝑗 (𝑡)
that keeps track of the number of user-issued requests (as
introduced in [2] for a single switch and generalized in this
work for an arbitrary topology).

At each time step, every demand queue 𝑑𝑖 𝑗 (𝑡) receives 𝑏𝑖 𝑗 (𝑡)
demands, which for simplicity are modeled as a Poisson process
with average value 𝛽𝑖 𝑗 (as in the case of ebit generation, more
complex models that accurately simulate real user demands may
be implemented). To maintain the model’s uniformity, all edges
belonging to Ẽ have a demand queue, but only the ones that
are associated to an (Alice𝑛,Bob𝑛) pair have nonzero arrivals.
All demand queues that are not associated to an (Alice𝑛,Bob𝑛)
pair are permanently zero.

Demand queues have a simpler evolution than ebit ones
because demands can only be generated, stored and even-
tually served: they are neither lost nor swapped. To model
consumption without swapping, we introduce the matrix
Ñ =

[
𝟘𝑁queues×𝑁transitions

��−𝕀𝑁queues

]
as a mean of interfacing with

the consumption part of the r(𝑡) vector. The evolution of
demand queues is therefore:

d(𝑡 + 1) = d(𝑡) + b(𝑡) + Ñr(𝑡) (4)

Notice that the last 𝑁queues components of the r(𝑡) vector
regulate both demand and ebit consumption: one demand
always consumes one ebit.

IV. SCHEDULING APPLICATION

The algebraic framework presented above poses as a tool to
gauge the performance and requirements of different scheduling
policies. In particular, a key point when discussing scheduling
policies is the availability of information: a scheduler working
with more information will understandably have much better
performance but pose harsher requirements on the classical
communication infrastructure that accompanies the quantum
system. This creates a clear tradeoff between information
requirements and performance, and the remainder of this work
is dedicated to exploring it, with the ideal result being a
scheduler that performs well while needing as little information
as possible and with a preference for decentralized policies
because they scale better.

We start by presenting a greedy scheduler which utilises min-
imal strictly local information: the greedy scheduler performs
swapping whenever there is availability of ebits and without
adapting to user demand. Therefore, in a greedy scenario,
every node randomly links pairs of queues connected to it,
until ebit resources are exhausted. In spite of the scheduling
being random, the greedy scheduler is still aware of routing:
on a 𝐴𝐵𝐶𝐷 linear topology with service routes 𝐴𝐵𝐶 and
𝐵𝐶𝐷, none of the schedulers examined in this work will
create 𝐴𝐷 entanglement because it is outside the service
routes. Despite its performance being much lower than more
refined schedulers, the greedy scheduler has the advantage
of not requiring any information about the system’s state,
thus lifting all the classical communication requirements and
being completely decentralized. Its main use is as a baseline
benchmark, in that any other scheduler must outperform it by

a large enough margin to justify the requirement for additional
information and/or communication infrastructures.

To gauge the improvement brought by additional information,
we also propose an analysis of two Max Weight policies. The
Max Weight protocol is a well-known result of network theory
[7] [10] that revolves around solving a linear program at each
time step. As soon as a queue (either ebit or demand) grows,
the Max Weight scheduler will try to reduce it; the aim is to
guarantee a service tailored to user requests on the demand
queue side, and also efficient and fair resource exploitation on
the ebit queues side, that does not lead to useless accumulation.

To fully explore the range of improvement that information
availability can supply, we start from an ideal case of fully in-
formed Max Weight scheduler: at each time step, the scheduler
knows the full state of the network (q(𝑡), d(𝑡), a(𝑡), ℓ(𝑡), b(𝑡)...)
and can therefore take the best possible decision. The discrete
linear problem is stated as:

min w𝑇 (𝑡) · r(𝑡) [global-MW]
s.t. r(𝑡) ∈ R(𝑡), (5)

with the weights given by

w(𝑡) = 𝛾(d(𝑡) + b(𝑡))𝑇 Ñ + (q(𝑡) − ℓ(𝑡) + a(𝑡))𝑇 M̃, (6)

where 𝛾 is a tunable parameter that allows to prioritize demand
queues or ebit queues in the scheduling calculations. The set
R(𝑡) of all possible scheduling decisions r(𝑡) at time slot 𝑡 is
defined as:

R(𝑡) =
{
r(𝑡) ∈ N𝑑

�� −M̃r(𝑡) ≤ q(𝑡) − ℓ(𝑡) + a(𝑡)
& − Ñr ≤ d(𝑡) + b(𝑡)

}
(7)

with 𝑑 = 𝑁transitions + 𝑁queues a shorthand for the dimension of
r(𝑡). Note that the scheduling decisions are vectors of natural
numbers, each decision consuming some number of ebits.

This full knowledge scenario provides a good performance
upper bound for Max Weight schedulers and a large perfor-
mance margin over the greedy policy, as shown in the numerical
evaluation section. Such a fully informed global scheduler is in
practice unrealistic as it requires complete information about
the instantaneous system state, right before each scheduling
decision. In fact, the full information would require a large
classical communication delay Δ𝑡, so the scheduler would
be based on stale information. This motivates to propose a
scheduling policy that requires less information, while retaining
to a certain level the performance benefits seen in the global-
MW case. The policy should rely on a limited amount of
exact quantities in the system’s state, together with suitable
assumptions about unknown information in order to carry out
a scheduling decision that is close to the optimal one. In
particular, we propose a Max Weight inspired scheduling policy
that works in a partially localized way: given a network, we
assume that all nodes have access to the network’s topology,
through knowledge over the matrix M and know average
quantities of interest, such as the intensity of Poisson generation
processes 𝛼𝑖 𝑗 , (𝑖, 𝑗) ∈ E, the memory efficiency 𝜂 and the
average demand arrival rates 𝛽𝑖 𝑗 , (𝑖, 𝑗) ∈ Ẽ. We furthermore

assume that every node knows the exact state of the network at
the beginning of each time step, i.e., q(𝑡) and d(𝑡). Despite q(𝑡)
and d(𝑡) being global information, we remind the reader that in
our model this information is exact for the beginning of the time
step, and is communicated during the time step Δ𝑡, to reach
all nodes by the end of the slot, when the scheduling decision
is made. Moreover, each node has complete information at the
end of the slot about all the queues (both physical and virtual)
that are directly connected to it. This last piece of information
is also available to the greedy scheduler and works as a leverage
point that provides great performance improvements.

Each node states its own Max Weight problem for the whole
network, combining its own perfect local information with
stale information received and with expected values for the
other nodes. Denoting as C𝑖 the set of all edges 𝑒 = (𝑖, 𝑗) ∈ Ẽ
that are connected to node 𝑖, the information available on node
𝑖 at step 𝑡 is

I𝑖 (𝑡) =
{
q(𝑡), d(𝑡), 𝜂, 𝛽, 𝛼, 𝑎𝑒 (𝑡), ℓ𝑒 (𝑡), 𝑏𝑒 (𝑡), ∀𝑒 ∈ C𝑖

}
.

(8)

By definition ∀𝑖, 𝑗 , 𝑡, 𝛼𝑖 𝑗 = 𝔼[𝑎𝑖 𝑗 (𝑡)] and = 𝛽𝑖 𝑗 = 𝔼[𝑏𝑖 𝑗 (𝑡)],
so the vectors of all mean arrivals are 𝛼 and 𝛽 respectively.
The vectors q(𝑡), d(𝑡) communicated to node 𝑖 as well as the
mean vectors 𝛼, 𝛽 are all of size Nqueues. Moreover, since 𝜂 is
the memory efficiency, 𝔼[ℓ𝑖 𝑗 (𝑡)] = (1 − 𝜂)𝑞𝑖 𝑗 (𝑡) ∀𝑖, 𝑗 , 𝑡.

The linear discrete scheduling problem localised on node 𝑖

can be stated as:

min (w𝑖)𝑇 (𝑡) · r(𝑡) [𝑖-local-MW]
s.t. r(𝑡) ∈ R𝑖 (𝑡), (9)

where the weights are given by

w𝑖 (𝑡) = 𝛾𝔼[d(𝑡) + b(𝑡) |I𝑖 (𝑡)]𝑇 Ñ
+ 𝔼[q(𝑡) − ℓ(𝑡) + a(𝑡) |I𝑖 (𝑡)]𝑇 M̃. (10)

Where 𝛾 serves the same purpose as before. The set R𝑖 (𝑡) of
all possible scheduling decisions r(𝑡) at time slot 𝑡 localised
at node 𝑖 is defined as:

R𝑖 (𝑡) =
{
r(𝑡) ∈ N𝑑

�� −M̃r ≤ 𝔼[q(𝑡) − ℓ(𝑡) + a(𝑡) |I𝑖 (𝑡)]
& − Ñr(𝑡) ≤ 𝔼[d(𝑡) + b(𝑡) |I𝑖 (𝑡)]

}
.(11)

After every node 𝑖 ∈ V has solved its individual problem,
all the partial solutions r𝑖 (𝑡) must be blended together to
create the global solution: notice that a solution that is locally
feasible may not be globally so when blended with others. To
solve this issue, the notion of rank of a queue is introduced:
if a queue is physical, its rank is zero. Otherwise, the rank
of a queue is given by the minimum number of swapping
operations required to add an ebit to it starting from an empty
network. Requests are then given a random timeout, to mimic
FCFS service in a real experimental system: if queues 𝐴𝐵

and 𝐵𝐶 are empty, then 𝑟𝐴[𝐵]𝐶 = 1 means a measurement is
performed and fails. This failure affects the 𝐴𝐶 supply any
hypothetical 𝐴[𝐶]𝑖 or 𝐶 [𝐴] 𝑗 transitions were scheduled to rely
on, making them fail as well. On the other hand, correcting
a decision for an outgoing transition for queues of rank ≥ 𝑛

0

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

Average demand rate across pair A-E, kHz

1000

875

750

625

500

375

250

125

0

Av
er

ag
e

de
m

an
d

ra
te

 a
cr

os
s p

ai
r B

-F
, k

Hz

% Unserved demands
Greedy

0

2

4

6

8

10

(a)

0

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

Average demand rate across pair A-E, kHz

1000

875

750

625

500

375

250

125

0

Av
er

ag
e

de
m

an
d

ra
te

 a
cr

os
s p

ai
r B

-F
, k

Hz

% Unserved demands
Full Information Max Weight

0

2

4

6

8

10

(b)

0

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

Average demand rate across pair A-E, kHz

1000

875

750

625

500

375

250

125

0

Av
er

ag
e

de
m

an
d

ra
te

 a
cr

os
s p

ai
r B

-F
, k

Hz

% Unserved demands
Localized Information Max Weight

0

2

4

6

8

10

(c)

Fig. 3. Simulation results: percentage of unserved demands by the three schedulers. The greedy scheduler (a) exhibits a square-shaped rate region whose sides
go from 0 kHz up to ∼ 300 kHz: this means that increasing demand across one commodity does not impair service of the other (with the current values of loss
and infinite memory). The fully informed (b) and locally informed’s (c) regions have a similar shape with a cut corner: the diagonal segment in the upper right
corresponds to a limitation of cumulative demand, that is of the sum of the two rates. The full information can serve individual demand up to ∼ 600 kHz,
twice the performance of the greedy scheduler, and a cumulative demand of ∼ 800 kHz, while the local information can serve ∼ 550 kHz and a cumulative
∼ 700 kHz. The diagonal segment is parallel to the optimal (𝛼, 0) − (0, 𝛼) bound (pictured), and in the lossless case it rests on it.

has no effect on the supply for transitions from queues of rank
< 𝑛. Therefore, both in a real system and in our model, the
users’ requests are served with a FCFS discipline, in ascending
rank order. The consumption part of r(𝑡) must be handled
with care too: since there is one term per queue and each
queue is linked to two nodes, there are two possible candidates
for each term. To keep a conservative approach, we take the
minimum of the two candidates for each term. Notice that this
is simply a design choice: other implementations could opt
to take the maximum or design more complex schemes. If a
conflict between a consumption operation and an intermediate
scheduling operation arises, priority is always given to user
service. We observe a great improvement in performance by
this policy compared to the greedy scheduler. Moreover, as this
policy is partially localized, it is practically implementable.

V. NUMERICAL RESULTS

This section shows a numerical comparison among the
presented scheduling policies through our algebraic model.
All the results were obtained through a Python simulator that
generates the M matrix given the Alice-Bob pairs and service
routes, and evaluates different policies. Its source code is
available at [16]. All simulations were carried out on the
𝐴𝐵𝐶𝐷𝐸𝐹 topology with 𝐴𝐵𝐶𝐷𝐸 and 𝐵𝐶𝐷𝐸𝐹 as service
routes, to create a bottleneck and gauge how the different
schedulers handle it. One of the standard performance metrics
in classical network theory is the capacity region, that can
be described as follows: taking average demand from the
competing clients as a set of axes, the capacity region is
defined as the locus of points that the network can serve in
a stable way, i.e., with all the queues returning to zero in a
finite time. For our finite time simulation, we approximate the
rate region by the percentage of unserved ebit requests (for an
average user-demand), measured at the end of the simulation
𝑡. In Fig. 3 all points in the dark blue region are certainly
servable and all yellow ones are unservable, with the midway
region providing an estimate for the capacity region’s bound.
We opt for such a performance metric (instead of the more

common average queue size) for illustration purposes, since
it provides us with a sharper boundary in approximating the
capacity region. All simulations were carried out on one node
of the LIP6 small cluster (2 x Intel Xeon E5645 12 cores,
24 threads at 2.4 GHz), with 105 time steps of 1𝜇𝑠 each and
an average ebit lifetime of 10𝜇𝑠, yielding 𝜂 = 0.9. 𝛼 was
set at 1 (time steps)−1 = 1 MHz for all links. In both the
fully informed and partially informed schedulers, the weight
𝛾 of demands in the scheduling calculation was set to 1. The
greedy, full information and local information schedulers took
respectively half an hour, 3 hours and 10 hours to complete
their run.

Concerning the shape of the regions reported in fig. 3, we
remark that the ideal shape for a rate region in this context
would be the (0, 0) − (𝛼, 0) − (0, 𝛼) triangle, meaning that all
pairs coming to the 𝐵𝐶𝐷𝐸 bottleneck are effectively employed
in demand service. The Full Information scheduler provides an
upper bound for the potential benefits of applying Max Weight
scheduling to quantum networks, while the Partial Information
scheduler showcases tangible improvement with a policy that
is localized enough to be reasonably implementable.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

We have presented a novel algebraic model for scheduling
in quantum networks and shown how it can be used to design
original scheduling policies for arbitrary quantum network
systems; these policies may be global or more localized for
practicality. Aside from the simple Max-Weight policies here,
other scheduling policies can be proposed and tested within
our framework. Since the presented model takes static routes
as inputs, an interesting extension to this work could be to
integrate dynamic routing algorithms such as [9], [14] to obtain
a full-fledged modeling toolbox to design quantum networks.

ACKNOWLEDGEMENTS

We thank Kaushik Chakraborty for stimulating discussions.
PF’s work is funded by the French state through the Programme
d’Investissements d’Avenir managed by the Agence Nationale
de la Recherche (project ANR-21-CMAQ-0001)

REFERENCES

[1] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, “Optimal architectures for long distance quantum
communication,” Scientific Reports, vol. 6, no. 1, p. 20463, Feb 2016.
[Online]. Available: https://doi.org/10.1038/srep20463

[2] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in
quantum switches: Protocol design and stability analysis,” 2021. [Online].
Available: https://arxiv.org/abs/2110.04116

[3] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic anal-
ysis of a quantum entanglement distribution switch,” IEEE Transactions
on Quantum Engineering, vol. 2, pp. 1–16, 2021.

[4] M. M. Wilde, Quantum Information Theory. Cambridge university
press, 2017.

[5] “Quantum protocol zoo.” [Online]. Available: https://wiki.veriqloud.fr
[6] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner,

“Shortcuts to quantum network routing,” 2016. [Online]. Available:
https://arxiv.org/abs/1610.05238

[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[8] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpȩdek,
M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho,
R. Hanson, and S. Wehner, “A link layer protocol for quantum
networks,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 159–173. [Online].
Available: https://doi.org/10.1145/3341302.3342070

[9] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu,
D. Englund, and S. Guha, “Routing entanglement in the quantum
internet,” npj Quantum Information, vol. 5, no. 1, p. 25, Mar 2019.
[Online]. Available: https://doi.org/10.1038/s41534-019-0139-x

[10] T. Vasantam and D. Towsley, “Stability analysis of a quantum
network with max-weight scheduling,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.00831

[11] W. Dai, T. Peng, and M. Z. Win, “Optimal remote entanglement
distribution,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 3, pp. 540–556, 2020.

[12] W. Dai and D. Towsley, “Entanglement swapping for repeater
chains with finite memory sizes,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.10994

[13] L. Bugalho, B. C. Coutinho, F. A. Monteiro, and Y. Omar, “Distributing
multipartite entanglement over noisy quantum networks,” 2021. [Online].
Available: https://arxiv.org/abs/2103.14759

[14] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entanglement
distribution in a quantum network: A multicommodity flow-based
approach,” IEEE Transactions on Quantum Engineering, vol. 1, pp.
1–21, 2020.

[15] M. Cao, F. Hoffet, S. Qiu, A. S. Sheremet, and J. Laurat, “Efficient
reversible entanglement transfer between light and quantum memories,”
Optica, vol. 7, no. 10, p. 1440, oct 2020. [Online]. Available:
https://doi.org/10.1364%2Foptica.400695

[16] “Simulator github repository.” [Online]. Available: https://github.com/
pfittipaldi/DynSchedSimulator

https://doi.org/10.1038/srep20463
https://arxiv.org/abs/2110.04116
https://wiki.veriqloud.fr
https://arxiv.org/abs/1610.05238
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1038/s41534-019-0139-x
https://arxiv.org/abs/2106.00831
https://arxiv.org/abs/2111.10994
https://arxiv.org/abs/2103.14759
https://doi.org/10.1364%2Foptica.400695
https://github.com/pfittipaldi/DynSchedSimulator
https://github.com/pfittipaldi/DynSchedSimulator

	Introduction
	Context and relevance of this work
	System Description
	Scheduling Application
	Numerical Results
	Conclusions and Future Perspectives
	References

