Learning Reduced Nonlinear State-Space Models: an Output-Error Based Canonical Approach - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Learning Reduced Nonlinear State-Space Models: an Output-Error Based Canonical Approach

Laurent Bako
Madiha Nadri
Christian Wolf
  • Fonction : Auteur
  • PersonId : 1134768

Résumé

The identification of a nonlinear dynamic model is an open topic in control theory, especially from sparse inputoutput measurements. A fundamental challenge of this problem is that very few to zero prior knowledge is available on both the state and the nonlinear system model. To cope with this challenge, we investigate the effectiveness of deep learning in the modeling of dynamic systems with nonlinear behavior by advocating an approach which relies on three main ingredients: (i) we show that under some structural conditions on the tobe-identified model, the state can be expressed in function of a sequence of the past inputs and outputs; (ii) this relation which we call the state map can be modelled by resorting to the welldocumented approximation power of deep neural networks; (iii) taking then advantage of existing learning schemes, a statespace model can be finally identified. After the formulation and analysis of the approach, we show its ability to identify three different nonlinear systems. The performances are evaluated in terms of open-loop prediction on test data generated in simulation as well as a real world data-set of unmanned aerial vehicle flight measurements.
Fichier principal
Vignette du fichier
submission.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03672151 , version 1 (19-05-2022)
hal-03672151 , version 2 (17-11-2022)

Identifiants

  • HAL Id : hal-03672151 , version 1

Citer

Steeven Janny, Quentin Possamaï, Laurent Bako, Madiha Nadri, Christian Wolf. Learning Reduced Nonlinear State-Space Models: an Output-Error Based Canonical Approach. 2022. ⟨hal-03672151v1⟩
128 Consultations
273 Téléchargements

Partager

More