On the completeness of total spaces of horizontally conformal submersions - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2021

On the completeness of total spaces of horizontally conformal submersions

Mohamed Tahar Kadaoui Abbassi
  • Fonction : Auteur correspondant
Ibrahim Lakrini
  • Fonction : Auteur

Résumé

In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of g-natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem.
Fichier principal
Vignette du fichier
10-2478-cm-2021-0031.pdf (253.26 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03665030 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Mohamed Tahar Kadaoui Abbassi, Ibrahim Lakrini. On the completeness of total spaces of horizontally conformal submersions. Communications in Mathematics, 2021, Volume 29 (2021), Issue 3 (3), pp.493 - 504. ⟨10.2478/cm-2021-0031⟩. ⟨hal-03665030⟩
31 Consultations
319 Téléchargements

Altmetric

Partager

More