Actions of the additive group Ga on certain noncommutative deformations of the plane - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2021

Actions of the additive group Ga on certain noncommutative deformations of the plane

Résumé

We connect the theorems of Rentschler [18] and Dixmier [10] on locally nilpotent derivations and automorphisms of the polynomial ring A0 and of the Weyl algebra A1, both over a field of characteristic zero, by establishing the same type of results for the family of algebras Ah = hx, y | yx − xy = h(x)i, where h is an arbitrary polynomial in x. In the second part of the paper we consider a field F of prime characteristic and study F[t]-comodule algebra structures on Ah. We also compute the Makar-Limanov invariant of absolute constants of Ah over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of Ah.
Fichier principal
Vignette du fichier
10-2478-cm-2021-0024.pdf (323.95 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03665021 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Ivan Kaygorodov, Samuel A. Lopes, Farukh Mashurov. Actions of the additive group Ga on certain noncommutative deformations of the plane. Communications in Mathematics, 2021, Volume 29 (2021), Issue 2 (Special Issue: 3rd International Workshop on Nonassociative Algebras in Málaga) (2), pp.269 - 279. ⟨10.2478/cm-2021-0024⟩. ⟨hal-03665021⟩
27 Consultations
395 Téléchargements

Altmetric

Partager

More