Multiplicative Lie triple derivations on standard operator algebras - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematics Année : 2021

Multiplicative Lie triple derivations on standard operator algebras

Résumé

Let X be a Banach space of dimension n > 1 and A ⊂ B(X ) be a standard operator algebra. In the present paper it is shown that if a mapping d : A → A (not necessarily linear) satisfies d([[U, V ], W]) = [[d(U), V ], W] + [[U, d(V )], W] + [[U, V ], d(W)] for all U, V, W ∈ A, then d = ψ + τ , where ψ is an additive derivation of A and τ : A → FI vanishes at second commutator [[U, V ], W] for all U, V, W ∈ A. Moreover, if d is linear and satisfies the above relation, then there exists an operator S ∈ A and a linear mapping τ from A into FI satisfying τ ([[U, V ], W]) = 0 for all U, V, W ∈ A, such that d(U) = SU − US + τ (U) for all U ∈ A.
Fichier principal
Vignette du fichier
10-2478-cm-2021-0012.pdf (241.67 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03665001 , version 1 (11-05-2022)

Licence

Identifiants

Citer

Bilal Ahmad Wani. Multiplicative Lie triple derivations on standard operator algebras. Communications in Mathematics, 2021, Volume 29 (2021), Issue 3 (3), pp.357 - 369. ⟨10.2478/cm-2021-0012⟩. ⟨hal-03665001⟩
14 Consultations
313 Téléchargements

Altmetric

Partager

More